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Abstract 
In vitro assays were carried out to investigate the solubilization of cell walls and generation of mannan 
oligosaccharides of a b-mannanase-containing commercial product on SBM. Using commercial dosages of the 
b-mannanase (500 g per ton of feed) cell wall degradation of mannan in SBM cell walls was visualized and an 
increase in reducing ends (0.12±0.02 mg/mL) and the generation of mannan oligosaccharides of degree of 
polymerization 2 and 4 (22.9±3.2 mg/L and 398.8±25.4 mg/L) were also measured using HPLC. Mannan, which 
is H-bonded to cellulose and xyloglucan, was solubilized using a single monocomponent enzyme, allowing for 
visualization of the disintegration of the entire SBM cell wall structure. This work is the first of its kind using 
strictly commercial dosage levels of enzyme for evaluating efficacy of the same microscopically. These data 
confirm the hypothesis that there most likely is a need for only a single relevant NSP enzyme targeting its 
specific substrate, independent of the concentration of the latter within the complex polysaccharide matrix in the 
plant cell wall to experience the beneficial effects of the enzyme both in vitro and in vivo. An analogy to compare 
our data would be destruction of the foundation (mannan) of a building or a bridge (soybean cell wall) which 
would inevitably lead to dismantling or demolition the entire building or bridge. 
Keywords: soybean meal, b-mannanase, mannans, antinutritional factors, microscopy, solubilization of mannan, 
MOS 

1. Introduction 
Non-starch polysaccharide (NSP) degrading enzymes are added to help increase the metabolizable energy in 
fiber-containing monogastric diets. Many studies in the past have been conducted to improve the understanding 
of the mode of action of NSPases or fiber-degrading enzymes for use in animal feed. The three main modes of 
action postulated are (1) reduction in viscosity (2) destruction of cell walls by solubilization of specific polymers 
which make up the cell walls to release the starch/protein encapsulated within and (3) Generation of soluble 
oligosaccharides during cell wall destruction which have prebiotic effects (Bedford, 2018). It has been reported 
that the addition of NSP-degrading enzymes such as b-mannanases and xylanases improve animal growth 
performance by improving nutrient digestibility and increasing the levels of good gut bacteria (Mehri et al., 2010; 
Lan et al., 2017). However, the mechanisms by which NSP-degrading enzymes exert these effects are still under 
debate. A recent study showed that there was increased ileal expression of MUCIN 2 in pigs fed high-fiber diets 
with no changes in goblet cell number. Addition of NSP-degrading enzymes to the diet modulated the local 
immune profile of the ileum, increasing IL-1b expression and concentration and decreasing IL-4, IL-17A and 
IL-11 concentration (Ferrandis et al., 2018). It is also claimed NSPases can be considered as tools to train the 
microbiome to be better able to degrade fiber more effectively especially when they are accompanied initially 
with oligosaccharides. By breaking down the fiber they produce small amounts of oligosaccharides which have 
prebiotic effect, and they are postulated to play a role in signaling to the gut microbial population present to 
develop a higher fiber-degrading capacity (Bedford, 2018).  



jas.ccsenet.org Journal of Agricultural Science Vol. 13, No. 2; 2021 

24 

In this work using a b-mannanase, a NSPase product we have endeavored to study in vitro, where we clarify the 
two postulated modes of action of NSPases: namely cell wall degradation or decaging effect and generation of 
prebiotic oligosaccharides. One of the key anti-nutritional factors (ANF) in plant cell walls is b-mannan, an NSP 
fiber component. It is composed of a backbone of mannose and glucose units in β-1,4-linkages (Moreira & Filho, 
2008), and may also be linked to galactose residues by α-1,6 linkage which increases its water solubility. The 
mannan structure in SBM is galactomannan having an average galactose to mannose ratio of 1:1.8 (Hsiao et al., 
2006). Mannan is H-bonded to cellulose and xyloglucan and its interaction with cellulose resembles that of 
xyloglucan (Schröder et al., 2009).  

One way of trying to understand the positive in vivo effects of NSPases, is to study the effects of the same in 
vitro. But cell wall breakdown theory with the current published in vitro data is also being challenged (Bedford, 
2018). One of the analytical tools used is microscopy to visualize the enzyme’s effect on feed substrates and 
understand cell wall breakdown theory as well as the composition and cell wall architecture of some raw 
materials (Pedersen et al., 2017). Commercial dosages of enzyme showed very little cell wall degradation 
(Tervila-Wilo et al., 1996), but cell wall degradation was clearly visualized when very high amounts of enzyme 
between 100-500X beyond commercial in-vivo dosages were used (Pedersen et al., 2017), which may not be 
economically relevant or be able to explain good in vivo effects (Le et al., 2013; Pedersen et al., 2017; Ravn et al., 
2016). The objective of current study was to use commercially relevant dosages of the current b-mannanase 
product on SBM and prove that the hypothesis of cell wall degradation is true; to show the effective 
solubilization/breakdown of cell walls by an NSPase enzyme in vitro and production of oligosaccharides in order 
to understand positive in vivo results obtained in poultry, pigs and cattle (Ferreira et al., 2016; Kim et al., 2017; 
Park et al., 2019; Tewoldebrhan et al., 2017). 

2. Materials and Methods 
2.1 Chemicals 

All chemicals used were from Sigma-Aldrich (USA), mannan oligosaccharides were purchased from Megazyme 
International, Ireland, antibodies were from Plant Probes, England and Thermo-Fisher Scientific. 

2.1.1 Plant Material 

The compositional analysis of the solvent extracted defatted SBM was as follows: Starch 2.4%, protein 46%, fat 
1.8%, fiber 4%, ash 6%. 

2.2 Enzyme Product 

CTCzyme obtained from CTCBio Inc. S. Korea, is a commercial monocomponent β-mannanase product 
produced by B. subtilis with a declaration of 800,000 U/kg mannanase. One enzyme unit is defined as generation 
of 1μmole of reducing sugar per min at pH6.0 and 50 °C using locust bean gum as substrate. 

2.3 Enzyme Treatment of SBM Before Microscopy 

Samples of SBM were incubated individually at pH 5 either without enzyme (control) or with the addition of 
either CTCzyme at commercial (1X) or 10X commercial dosages. In short, 1 g each of SBM samples was 
incubated with 0.1 M sodium acetate buffer pH 5 alone (control) or commercial β-mannanase product CTCzyme 
in the same buffer at 40 °C for 4 h with stirring at 500 rpm. After incubation, the samples were then centrifuged 
at 2500 × g for 10 min. The pellets obtained were washed once with MiliQ water, recentrifuged and dried 
overnight at 60 °C and used for microscopy analyses. 

2.4 Embedding and Sectioning 

Controls and enzyme treated SBM pellets were embedded in paraffin. Prior to the embedding procedure, a 
protocol according to Ravn et al. (2016) was followed whereby the control and enzyme treated SBM samples 
were first fixed in Karnovsky’s fixative, washed progressively in 0.1 M cacodylate buffer pH 7.3 and 
demineralized water and dehydrated increasingly higher concentrations of ethanol (from 50-99%) before 
infiltration in melted paraffin at 60 °C using Histochoice clearing agent (Sigma-Aldrich). Approximately 7-10 
μm thick sections of paraffin-embedded samples were sectioned on a Leica Reichert-Jung 2030 microtome.  

2.5 Immunochemistry for Visualization of Samples Embedded in Paraffin and Staining With Calcofluor 

The procedure was carried out as described in Pedersen et al. (2017). A 5% skimmed milk solution (from 
Sigma-Aldrich) in 1× PBS was used to block the paraffin sectioned SBM samples of control (Incubated with 
buffer alone) and b-mannanase-treated enzyme product for 1 h. Sections were then washed in PBS buffer 
followed by incubation for 1 h with 10-fold dilutions of the rat monoclonal antibody (LM21) diluted in the 
skimmed milk-PBS buffer solution. Samples were subsequently incubated for 1½ h with anti-rat IgG linked to an 
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Alexa-555 fluorophore and washed in PBS buffer. The anti-fading agent Citiflour AF1(Agar Scientific, UK) was 
used to avoid fluorescence signal from bleaching. A negative control labelling was also carried out using only the 
secondary antibody. Slides were also stained for 2 minutes with a drop of Calcofluor stain as a counterstain to 
stain b-glucan linkages such as cellulose and xyloglucan in the presence and absence of LM21—the antibody to 
b-mannan.  

2.6 Confocal Immunofluorescence Microscopy 

A Confocal Laser Scanning Microscope (Olympus, Japan), was used to obtain confocal images of 
immunolabeled SBM samples. A 20x water-immersion objective was used for all images. An excitation laser line 
at 561 nm (green) and an emission spectrum from 590 to 630 nm designated red in the software was used to 
monitor the Alexa-555 fluorescein-signal from the immunolabelling. An excitation laser line at 488 nm (blue) 
and an emission spectrum from 500 to 540 nm designated green in the software was used to monitor the 
autofluorescence from protein globules. For the calcofluor staining, an excitation laser line of 405 nm and an 
emission spectrum from 430-480 nm, designated as blue in the software was used to monitor the fluorescence of 
the cell walls. Multicolor super resolution images in 3 different channels were simultaneously obtained. 

2.7 Enzyme Reaction for Wet Chemistry Analyses 

SBM was used at a concentration of 1%. The experiments were carried out in triplicate. In short, 3 g of SBM 
was mixed with 300 mL of 0.02 M phosphate buffer at pH 6.0 and 300 u/mL enzyme (commercial dosage) and 
incubated for a total of 180 mins at 50 °C with stirring. Samples were taken at several time intervals for reducing 
end assays and at the end of the reaction for analyses of oligosaccharides. After the incubation time, the reaction 
mixture was centrifuged, and supernatant were tested for reducing ends and were also run on an HPLC column 
(SUGAR SP0810, Shodex, Japan) for detection of MOS as described.  

2.8 Reducing ends assay 

DNS assay was carried out using SBM (1.0% w/v) as substrate. SBM was mixed with 20 mM sodium-phosphate 
buffer (pH 6.0) by stirring constantly at 50 °C. An aliquot of 300 U/ml enzyme was incubated with the SBM 
substrate at 50 °C up to 120 min. The reaction was stopped by the addition of DNS reagent and subsequent 
boiling for 5 min and reducing sugar was measured at 540 nm against the blank. The reducing sugars released 
were then determined against a standard curve obtained with mannose (Sigma-Aldrich) (Miller, 1959; Garriga et 
al., 2017).  

2.9 HPLC 

Mannan oligosaccharide concentrations were analyzed by high performance liquid chromatography with 
evaporative light scattering detector (HPLC-ELSD) using an Agilent 1200 system (Agilent, CA) with SUGAR 
SP0810 analytical column (8 × 300 mm) at 80 °C. For analysis of oligosaccharides, deionized water was used as 
an eluent. The eluent flow was kept at 1.0 mL/min. Quantification was carried out using external standards: 
mannan oligosaccharides purchased from Megazyme, Ireland. Amounts were expressed as milligrams per liter 
(mg/L). Data were collected and analyzed with the program ChemStation software (Agilent, CA). 

2.10 Statistical Analysis 

All statiscal analyses of the sugar ends data were done in Excel (Microsoft Office, 2016) by T-test group 
comparison, one tailed test. Visualization of enzyme by microscopy was only observational and was done in 
triplicate.  

3. Results 
3.1 Microscopy 

Images were recorded with a confocal laser scanning microscope (CLSM) displaying the Alexa-555 fluorescein 
signal in red, protein autofluorescence signal is green and calcofluor signal as blue. Calcofluor is known to emit 
fluorescence when binding to b-glucan linkages such as cellulose (Herrera-Ubaldo & de Folter, 2018) and 
xyloglucan. Immunofluorescence labelling with monoclonal antibody LM21 b-mannan (Marcus et al., 2010) 
bound to the cell wall lining overlapping the blue color showing that b-mannan is very closely linked to the 
b-glucan linkages cellulose and xyloglucan the major NSP in SBM (Figure 1A). After enzyme treatment, the 
monoclonal antibody signal was significantly reduced (Figure 1B), or not detected (Figure 1C), compared to 
samples incubated in acetate buffer alone (Figure 1A). A notable loosening of cell walls can be seen on enzyme 
treatment making the protein more visible (Figures 1B and 1C). 
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times commercial dosage of an NSPase (Ravn et al., 2016) and 100 and 1000 times commercial dosage to 
measure fiber solubilization (Pedersen et al., 2017) and to visualize enzyme efficacy using microscopy. The use 
of such high amounts may most likely indicate that the concentration of relevant enzyme/s in the NSPase product 
are very low and very high dosages are needed to show in vitro efficacy or the enzymes are acting sub additively. 
The in vitro data in this paper shows that using commercial dosage of b-mannanase product CTCzyme was 
sufficient to solubilize mannan. 

An increase in reducing ends of sugars as well generation of mannose oligomers were measured in this study. 
The commercial prebiotic MOS-containing product Salmosan® S-βGM (produced from carob and guar bean 
mannan hydrolyses) protected epithelial barrier function in a Caco-2 cell model disrupted by Salmonella 
enteritidis and had the ability to agglutinate the same (Brufau et al., 2016). MOS increased Bacteroidetes 
proliferation (Teng & Kim, 2018); L. salivarius was shown to be most effective against Salmonella colonisation 
and L. crispatus is effective against both Salmonella and E. coli (Teng & Kim, 2018). Supplementing broiler 
diets with MOS resulted in a reduction in coccidiosis lesions caused by Eimeria species (Elmusharaf et al., 2007) 
due to improved immune function and increased their growth performance as well (Chand et al., 2016). 
Supplementation of 0.2 % dietary MOS to broilers significantly reduced E. coli profiles in the caecum and ileum 
of birds (Chacher et al., 2017). MOS having a degree of polymerization ≤ 5 are stated to have powerful prebiotic 
and butyrogenic effects (Tiwari et al., 2020). In vitro assays measuring MOS in this work showed the generation 
of MOS having DP of 2 and 4 after enzyme reaction on SBM, indicating the ability of the b-mannanase to 
produce oligomers having prebiotic potential.  

The irrefutable conclusion of the efficacy of a feed enzyme is of course proof of improved performance in the 
animal. In vivo data showed that supplementing a corn-soy diet with CTCzyme in a broiler trial increased the 
apparent metabolizable energy (AME) and apparent metabolizable energy corrected for nitrogen (AMEn) of 
diets by 4.6 and 5.0% (Kong et al., 2011). In the same way, using suboptimal nutrient levels in a broiler trial 
Ferreira et al. (2016) showed an improved AMEn of 1.5% with the inclusion of CTCzyme. With supplementation 
of CTCzyme β-mannanase in a low-energy and low-protein diet, laying hens were able to maintain similar 
production performance when compared to a high-energy and high-protein diet during early and late egg 
production (Zheng et al., 2020). There was no inclusion of any low molecular weight fermentable 
oligosaccharides in the above mentioned in vivo work besides the enzyme as opposed to the work of Cordero et 
al. (2019) which included both enzyme and fermentable oligosaccharides (in the experiment: a xylanase and 
xylan oligosaccharides). This suggests the ability of the b-mannanase product to solubilize mannans creating 
bioactive potent oligosaccharides even early in the digestion process in the animal gut within its life span, 
thereby alleviating the need for addition of further fermentable oligosaccharides in the product. Further work to 
test the prebiotic effect of the generated mannose oligosaccharides in vitro as well as inclusion of low molecular 
weight fermentable oligosaccharides in vivo needs to be conducted. 

Based on our in vitro data in this paper, and published in vivo data (Kong et al., 2011; Mussini et al., 2011, Zheng 
et al., 2020) we can confirm the two modes of action of CTCzyme as an NSPase: (1) Solubilization of mannan in 
the cells walls to loosen and destroy the compact cell wall architecture thereby making the protein more 
bioavailable, and (2) Release of mannose oligomers considered to have prebiotic functions for improving gut 
health and integrity. 
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