The Logarithmic Burr-Hatke Exponential Distribution for Modeling Reliability and Medical Data


  •  T. H. M. Abouelmagd    

Abstract

In this work, we introduced a new one-parameter exponential distribution. Some of its structural properties are derived% \textbf{.} The maximum likelihood method is used to estimate the model parameters by means of numerical Monte Carlo simulation study. The justification for the practicality of the new lifetime model is based on the wider use of the exponential model. The new model can be viewed as a mixture
of the exponentiated exponential distribution. It can also be considered as a suitable model for fitting right skewed data.\textbf{\ }We prove empirically the importance and flexibility of the new model in modeling
cancer patients data, the new model provides adequate fits as compared to other related models with small values for $W^{\ast }$\ \ and $A^{\ast }$. The new model is much better than the Modified beta-Weibull, Weibull, exponentiated transmuted generalized Rayleig, the transmuted modified-Weibull, and transmuted additive Weibull models in modeling cancer patients data. We are also motivated to introduce this new model because it has only one parameter and we can generate some new families based on it such as the the odd Burr-Hatke exponential-G family of distributions, the logarithmic\textbf{\ }Burr-Hatke exponential-G family of distributions and the generalized\textbf{\ }Burr-Hatke exponential-G family of distributions, among others.


This work is licensed under a Creative Commons Attribution 4.0 License.