The Bayes Factor for the Misclassified Categorical Data
- Tze-San Lee
Abstract
This article addresses the issue of misclassification in a single categorical variable, that is, how to test whether the collected categorical data are misclassified. To tackle this issue, a pair of null and alternative hypotheses is proposed. A mixed Bayesian approach is taken to test these hypotheses. Specifically, a bias-adjusted cell proportion estimator is presented that accounts for the bias caused by classification errors in the observed categorical data. The chi-square test is then adjusted accordingly. To test the null hypothesis that the data are not misclassified under a specified multinomial distribution against the alternative hypothesis they are misclassified, the Bayes factor is calculated for the observed data and a comparison is made with the classical p-value.
- Full Text: PDF
- DOI:10.5539/ijsp.v7n4p91
Index
- ACNP
- Aerospace Database
- BASE (Bielefeld Academic Search Engine)
- CNKI Scholar
- COPAC
- DTU Library
- Elektronische Zeitschriftenbibliothek (EZB)
- EuroPub Database
- Excellence in Research for Australia (ERA)
- Google Scholar
- Harvard Library
- Infotrieve
- JournalTOCs
- LOCKSS
- MIAR
- Mir@bel
- PKP Open Archives Harvester
- Publons
- ResearchGate
- SHERPA/RoMEO
- Standard Periodical Directory
- Technische Informationsbibliothek (TIB)
- UCR Library
- WorldCat
Contact
- Wendy SmithEditorial Assistant
- ijsp@ccsenet.org