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Abstract 

This article addresses the issue of misclassification in a single categorical variable, that is, how to test whether the 

collected categorical data are misclassified.  To tackle this issue, a pair of null and alternative hypotheses is proposed. A 

mixed Bayesian approach is taken to test these hypotheses. Specifically, a bias-adjusted cell proportion estimator is 

presented that accounts for the bias caused by classification errors in the observed categorical data. The chi-square test is 

then adjusted accordingly. To test the null hypothesis that the data are not misclassified under a specified multinomial 

distribution against the alternative hypothesis they are misclassified, the Bayes factor is calculated for the observed data 

and a comparison is made with the classical p-value.   
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1. Introduction 

The problem of misclassification is a major issue in observational epidemiologic studies. Not long after Bross (1954) 

pointed out that the non-differential misclassification would bias the corrected odds ratio toward the null hypothesis, 

Diamond and Lilienfeld (1962a-b) has extended the result to various types of epidemiologic studies. A 2 × 2 case-control 

studies with a single exposure variable being misclassified has been widely studied (Fleiss et al 2003, Chapter 17; 

Gustafson 2004, Chapter 5; Kleinbaum et al 1982, Chapter 12; Rothman et al 2008, Chapter 19). Yet, almost no authors 

pay attention to investigate the effect of misclassification in the analysis of a single categorical variable except Mote and 

Anderson (1965). Mote and Anderson primarily takes a deductive approach to account for the bias caused by the 

classification errors. Yet, the shortcoming with a deductive approach is that it does not take the sampling errors into 

consideration. As a result, the issue on how to deal with the misclassification in the analysis of categorical data still 

remains unsolved.  

This article addresses another important issue, that is, whether the observed categorical data are misclassified. Instead of 

using a deductive method, an inductive approach is employed to account for the misclassification bias embedded in the 

collected data. First, the inverse way is taken by equating the expected value of the estimated sample cell proportion with 

its population parameter conditional on that the misclassification probabilities are given. Then the bias-adjusted estimator 

is presented for the population cell proportion parameter by inverting the misclassification matrix. Second, the 

appropriate misclassification probabilities are calculated depending on if the misclassification is possibly made either 

from one category to all other categories (scenario I) or merely to its neighboring categories (scenario II). Third, in order 

to test the null hypothesis that the data are not misclassified under a specified multinomial distribution, a mixed Bayesian 

approach is used to calculate the Bayes factor and compare it with the traditional p-value.  

2. Methodology & Background 

Given that X is a categorical variable with K (≥ 3) categories and the data are collected through a simple random sampling 

of size N, where 



K

i
inN

1

(table 1). The crude estimator, jp̂ , for the population cell proportion pj in the jth category is 

then given by  

    Nnp jj /ˆ  .          (1) 

Assume that jp̂ is distributed as a multinomial distribution with the population size N and the cell proportion of the jth 

category pj. It is well known that Eq. 1 is an unbiased estimator for the population cell proportion parameter, provided that 

the observed data are not misclassified (Agresti 2002). However, it is shown below by Eq. 4 that jp̂
 
of Eq. 1 is no longer 

unbiased for pj, once the observed data are misclassified.  
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Table 1. Observed data for the categorical variable X   

Variable Categories 

X 1 2 ……… K 

Observation n1 n2 ……… nK 

 

Suppose that the observed data are misclassified. Let wjk (j k) be the misclassification probability of an observation 

belonging to the jth category being incorrectly classified into the kth category and wjj the correct classification probability 

that an observation belonging to the jth category being correctly classified into the jth category. Then, it is easily shown that 

the expected value of p̂ is  

     WppE )ˆ( ,           (2) 

where ),...,,( 21 Kpppp  , )ˆ,...,ˆ,ˆ(ˆ
21 Kpppp  , and Kkj

T
jkwW ,...,2,1,][   is the misclassification matrix, in 

which 1
1




K

k
jkw for j = 1, 2, …, K. Eq. 2 shows that the crude estimator kp̂  is no longer  unbiased for the 

population parameter pk , provided that IW  ,where I is the K × K identity matrix. A set of misclassification 

probabilities {wjk} is said to be feasible if the misclassification matrix W in Eq. 2 is invertible (or nonsingular) for 0 < 

wjk < 1.  

Assume that W is invertible. Then bias-adjusted cell proportion (BACP) estimators ( kp


) are defined by 

    pVpWp ˆˆ1  
,          (3) 

where 
T

Kpppp ),...,,( 21


 , V = [vjk], j, k = 1, 2, …, K, denotes the inverse matrix of W, and Vnn 


, 

T
Knnn ),,,,,( 1


 , T

Knnn ),...,( 1 . Note that by using Eqs. 2 and 3 it’s easily shown: ppE )(


, namely, p


is an 

unbiased estimator for p, provided that W is known. The BACP estimators { kp


} are said to be admissible if for feasible 

wjk we have  10  kp


 and 



K

j
jp

1

1


. Similarly, a set of misclassification error probabilities {wjk} is said to be 

admissible if the corresponding BACP estimators { kp


} are admissible.        
    

 

The misclassification matrix W has two possible forms depending on how the categorical variable X is misclassified. 

There are two possible scenarios that are given as follows: 

Scenario I: The misclassification occurs after classifying one category incorrectly into all other categories. Also, because 

misclassification can occur equally likely from any one of the jth correct category to the kth (observed) wrong category, we 

thus have, for fixed j 

0 jkj w , k ≠ j, and 






K

jk

k
jkjj ww

1

1 , j = 1, 2, …, K,      (4) 

Scenario II: The misclassification occurs after classifying one category incorrectly only into its neighboring categories. 

Therefore, we have, for fixed j 

wjk = 0 for |k - j| > 1, and 






K

jk

k
jkjj ww

1

1 , j = 1, 2, …, K.     (5)  

When K = 3, the associated misclassification matrix with its determinant and its inverse matrix for scenarios I and II are 

hereby obtained respectively. An explicit form of the misclassification matrix WI and its inverse VI for scenario I are given 

respectively by 
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








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











2121
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1

1


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IW ,      (6a) 

  0)1()det( 2
321  II W ,        (6b) 

and 

  


























333

222

111

)(

1

1

1

][ 2

1







IIjkI vV ,      (6c) 

where 13121 ww  , 23212 ww  , and 32313 ww  . 

The BACP estimators for scenario I are given by 

  



K

j
jIjkIk pvp

1
)()( ˆ


,  k = 1, 2, …, K,      (7) 

By using Eqs. 6b and 7, the feasibility and admissibility constraints for the misclassification probability and BACP 

estimator are given respectively as follows: 

    1321   ,         (8a) 

and 

    11  ,     12  ,     13  .       (8b)  

For scenario II, an explicit form of the misclassification matrix WII and its inverse VII are given respectively by 

























22

3311

22

10

1

01







IIW ,       (9a) 

0)1)(1()det( 3212  IIII W ,      (9b) 

and 























 

1322332

22
2

222

212121

1
)(

)1)(1()1(

)1()1()1(

)1()1)(1(

][







IIIIjkII vV ,   (9c) 

where 121 w , 23212 ww  , 323 w , and 03113  ww .  

The BACP estimator for scenario II is thus given by 

  



K

k
kIIjkIIj pvp

1
)()( ˆ


,  j = 1, 2, …, K.      (10) 

By using Eqs. 9b and 10, the feasibility and admissibility constraints for the misclassification probability and BACP are 

given respectively as follows: 

       1321   ,         (11a) 

and 

        22 p̂ .              (11b) 

To test whether the data in table 1 are misclassified, we need to test the following (sharp) null hypothesis that the data has 

no misclassification under p = p0 versus the alternative hypothesis that the data are misclassified (Berger and Selleke 
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1987) 

H0: p = p0, ω = 0 versus H1: p ≠ p0, ω > 0,            (12) 

where T
Kppp ),...,( 1 , T

Kppp ),...,( 00
1

0  , 
11 1 21 2 1( ,..., , ,..., ,..., ,... )T

K K K KKw w w w w w  , {wjk} are the 

entries of the misclassification matrix W given by Eq. 2.  

To test Eq. 12 the bias-adjusted chi-square test (BACST) is given by  

   



K

k
kkkk

K

k
kK NnnpppN

1

02020

1

)/(]/)[(


,    (13) 

where 



K

j
jjkk nvn

1


, vjk denotes the entry of the jth row and the kth column of the inverse matrix V of the 

misclassification matrix W in Eq. 2 and 00
kk Npn  , k = 1,…, K. 

For large samples, Eq. 13 is distributed under H0 asymptotically as the central chi-square distribution with K – 1 degrees 

of freedom (df). Yet Eq. 13 is distributed asymptotically under H1 as the noncentral chi-square distribution with K – 1 

degrees of freedom and the non-centrality parameter given by (Lancaster 1969) 

   )2()( 020

1

2

1

20
jjj

K

j
j

K

j
jjK pppppp  






.      (14) 

When wjk = 0 for all j and k, Eq. 13 reduces to  





K

j
jjK Nnn

1

02 )/(ˆ .        (15) 

Reject the null hypothesis H0 if 0
ˆ CK  , where K̂  is given by Eq. 15 and C0 is the critical value of the central 

chi-square distribution with K – 1 df at the significance level α 

As is well known from the Bayesian viewpoint, the p-value is not an adequate measure for the evidence to support the null 

hypothesis (Goodman 1999a-b). Hence the Bayes factor is calculated as a comparison with the p-value. To formulate the 

hypothesis-testing problem in a Bayesian setting we begin with the data ),...,,( 21 Knnnn  and assume that its 

probability distribution follows in a family of distributions which are parameterized by ),( p , where 

}0,1|{
1

 


k

K

k
k ppp  is the K-dimensional simplex. To test the hypotheses of 0,: 0

0  ppH  vs 

0,: 0
1  ppH (Eq.12), it is assumed that there exist a prior probability density function (PDF) )(0 h  and another 

joint density ),( ph under H1. Since p and ω are a priori independent under H1, we have 

   )()(),( 0 pghph   ,        (16) 

where g  is a prior PDF on p ϵ Σ which assigns mass π0 to {p = p0} and 1 – π0 to {p ≠ p0}. Define 0)( 0 pg  and 

writing the PDF of K


 given p and ω as ),|( pf K


, the Bayes factor is given by (Kass and Raftery 1995)  

   
)(

)0,|(
)(

0

Kg

K
K

g

m

pf
B




 


 

,       (17a) 

where gm  is given by  
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   


 dpdpghpfm KKg  )()(),|()( 0


.      (17b) 

In Eq. 17a, )0,|( 0  pf K


is the PDF of the central chi-square distribution with K – 1 df, while ),|( pf K


in Eq. 

17b is the PDF of the noncentral chi-square distribution with K – 1 degrees of freedom and the non-centrality parameter 

K


 given by Eq. 14. 

When K = 3, )( )(3 Igm 


of Eq. 17b is calculated for Scenario I with the assumption of   321 and  

1
0 )(  ch  , the PDF of uniform distribution over [0, c], where c is the upper bound on the admissible BACP for 

scenario I and obtain 

     dppgd
t

c
m

c

Ig )()
2

exp(
2

11
)(

30 3

)(3 





  







,     (18) 

where an approximation to the noncentral chi-square distribution is provided by using the central chi-square distribution 

(Cox and Reid 1987). The lower bound for the Bayes factor after using a symmetric Dirichlet’s prior for g(p) are obtained 

under scenario I and II:  

   
)|(

]})/([exp{

)(3)max(

3

1

02

2
1

2
1

iig

j
jj

g
i

m

Nnn

B












 , i = I or II.     (19) 

The details for obtaining the value of )max( i , i = I or II, are given in the appendix.  

3. Example 

The data in table 2 are taken from table C.1 in Woodward’s book, pp. 756-760 (Woodward 2005). It represents the lung 

cancer data collected by the Bombay Cancer Registry from all cancer patients registered in the 168 government and 

private hospitals and nursing homes in Bombay, Australia, and from death records maintained by the Bombay Municipal 

Corporation. The survival times of each subject with lung cancer from time of first diagnosis to death (or censoring) were 

recorded over the period 1st January 1989 to 31st December 1991. Here we are only concerned with type of tumor of 682 

subjects grouped by gender.  

 

Table 2. 682 cancer patients are classified by sex and type-of-tumor  

 Type of tumor 

Gender Local Regional Advanced Total 

Male 165 169 229 563 

Female 37 39 43 119 

 

The issue of concern here is whether the data are misclassified separately for males and females. Because we do not 

have any prior belief on the values of p0 in Eq. 12, they are thereby determined empirically from the observed data. As a 

result, the values of p0 are chosen differently for males and females. For females the values of p0 in the null hypothesis 

are chosen to be that of equiprobability,
3
1

321)(0 :  pppH F and wjk = 0 vs 
3
1

321)(1 :  pppH F  and wjk > 0, 

while that of p0 in the null hypothesis for males are set up as follows: 4.0,3.0,3.0: 321)(0  pppH M  and wjk = 0 
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vs 4.0,3.0,3.0: 321)(1  pppH M  and wjk > 0. Because the misclassification probabilities of {wjk}, j, k = 1, 2, 3 

are zero under the null hypothesis, the BACST values of Eq. 15 are then given respectively by M̂  = 0.15 (p-value = 

0.93) and F̂  = 0.47 (p-value = 0.79) for males and females. Therefore, the null hypothesis H0 is not rejected at the 

significance level of 0.05 for both males and females. Yet, we would like to test the above hypotheses from the 

Bayesian perspective by calculating the Bayes factor as a comparison with the p-value.   

For both males and females under scenarios I or II, Eq. A10 in the appendix has three negative and one positive real, 

and a pair of conjugate complex roots. Due to the constraint that τ > 0, only the positive root is a stationary point for Eq. 

A9. Eq. A9 for males has only under scenario II a unique positive local maximum (Figure 1), while Eq. A9 has a unique 

positive local maximum at its stationary point for females only under scenario I (Figure 2).  

 

Table 3. A comparison of the lower bound for Bayes factor (Eq. 19) with the p-value for admissible CF models 

Scenario II  

Males c2 
)max( II  )( )max( IIgm   g

IIB  
p-value 

Table 2 0.293073 0.0553 61 0.053 0.93 

Scenario I 

Females c1 
)max( I  )( )max( Igm   g

IB  
p-value 

Table 2 0.310924 0.0540 1.8 0.22 0.79 

 

By taking the reciprocal of the lower bound of the Bayes factor (table 3, column 5) we are able to assess the evidence 

whether the cancer data in table 2 are misclassified. The collected data for males were in favor of supporting H1 against H0 

by at most a factor of “19 to 1”, whereas for females by at most a factor of “5 to 1”.  

 

 

Figure 1. A plot of )|( )(3 IIgm   given by Eq. A9 is for CF model 10 under scenario II for males 
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Figure 2. A plot of )|( )(3 Igm   given by Eq. A9 is for CF model 12 under scenario I for females 

 

4. Discussion 

Some interesting observations are worthy to be mentioned below: 

1. So far, this author is not aware of any guideline available in the literature on deciding how large the lower 

bound for the Bayes factor should be so that we’re confident the evidence provided by the data surely 

supporting H1 rather than H0. Yet, since the lower bounds for the Bayes factor from the cancer data for both 

genders were not large enough, a tentative conclusion was that the cancer data in table 2 seemed unlikely to 

be misclassified. Although H0 was not rejected for both gender in table 2 either according to their p-values 

(table 3, column 6), the p-value is, strictly speaking, not an appropriate measure for assessing the evidence 

provided by the data due to its inherent fallacy (Goodman 1999a-b). 

2. From the analysis of the Bombay cancer data, the existence of Bayes factor seems to depend not only on the 

scenario (I or II) (the misclassification pattern), but also the multinomial distribution of p0 (table 3). To 

clarify this issue, another data set related to the degree of severity for the clinical condition of myocardial 

infarction patients was studied (Snow 1965), where the distribution of p0 for the treated and control groups 

are respectively specified as (0.4, 0.4, 0.2) and (0.3, 0.4, 0.3). It was found that the Bayes factor existed for 

the treated group under scenario I, but not under scenario II, whereas for the control group it exists under 

both scenarios. It seems that a crucial condition for the existence of Bayes factor is whether the BACST 

value (Eq. 13) is positive. As far as the existence of the Bayes factor is concerned, I’d like to make a 

conjecture which is given as follows: 

“For any data set under either scenario I or II the lower bound of
g
iB , i = I or II, exists if the associated (.)K


of Eq. 13 

is positive for K ≥ 3.”  

5. Conclusion 

This paper addresses an issue: “how to test whether the collected categorical data are misclassified.” A mixed Bayesian 

approach is used to test the null hypothesis that the collected data are not misclassified under a specified multinomial 

distribution for the studied categorical variable. The Bayes factor is employed as the main instrument to assess the 

evidence provided by the data. The lung cancer from all hospitals in the city of Bombay, Australia was used as an 

example for illustration. Based on the result of the Bayes factor in this study, the p-value was shown again not an 

appropriate measure to assess the evidence provided by the data.  
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Appendix A 

With an assumption of   321  and pNn


 , we have under scenario I  
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By substituting Eq. A1 into Eq. 13, we have 
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By Eq. 14, we have 
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Note that )( Kgm 


of Eq. 18 with a choice of )(0 h which equals to the pdf of uniform distribution over [0, c1] is 

reduced to  
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 are given respectively by Eqs. A2 and A3. By using a linear approximation from the Taylor series 
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By substituting Eqs. A2 and A3 into the above equation and integrating )(3 I
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 with respect to θ, we have after algebraic 

simplification  
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With an assumption of   321 , we have under scenario II  
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By using Eq. A6, we have 
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 If the prior distribution function for g(p) is taken to be a symmetric Dirichlet’s distribution with the flattening constant 

(or hyper-parameter) τ (τ > 0) (Good 1975), then Eq. A5 is reduced to 
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Similarly, )|( )(3 IIgm  has exactly the same expression like Eq. A9 except that )(3 I and c1 are replaced respectively 

by )(3 II  and c2. 

To avoid the use of hyper-prior distribution on τ (Good and Crook 1974), the non-Bayesian approach is used to find the 

stationary point max(.)  for )|( (.)3


gm . By using an elementary technique in calculus to calculate the first derivative 
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of )|( )(3 Igm 


  and set it equal to zero, we have after simplification  
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To solve Eq. A10 for the stationary points, I employed the “ROOTS” subroutine in the MATLAB (Redfern and 

Campbell 1998).   

According to the terms of Good (1975), the way to estimate max is called by the type II maximum likelihood or the 

maximum hyper-prior likelihood method. This kind of approach to estimate the Bayes factor is called the 

Bayesian/Fisherian criterion which is a compromise from taking a full Bayesian approach.  

 

Copyrights 

Copyright for this article is retained by the author(s), with first publication rights granted to the journal. 

This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/4.0/). 

 


