Statistical Distribution of Roots of a Polynomial Modulo Primes III
- Yoshiyuki Kitaoka
Abstract
Let $f(x)=x^n+a_{n-1}x^{n-1}+\dots+a_0$ $(a_{n-1},\dots,a_0\in\mathbb Z)$ be a polynomial with complex roots $\alpha_1,\dots,\alpha_n$ and suppose that a linear relation over $\mathbb Q$ among $1,\alpha_1,\dots,\alpha_n$ is a multiple of $\sum_i\alpha_i+a_{n-1}=0$ only. For a prime number $p$ such that $f(x)\bmod p$ has $n$ distinct integer roots $0<r_1<\dots<r_n<p$, we proposed in a previous paper a conjecture that the sequence of points $(r_1/p,\dots,r_n/p)$ is equi-distributed in some sense. In this paper, we show that it implies the equi-distribution of the sequence of $r_1/p,\dots,r_n/p$ in the ordinary sense and give the expected density of primes satisfying $r_i/p<a$ for a fixed suffix $i$ and $0<a<1$.- Full Text: PDF
- DOI:10.5539/ijsp.v7n1p115
This work is licensed under a Creative Commons Attribution 4.0 License.
Index
- ACNP
- Aerospace Database
- BASE (Bielefeld Academic Search Engine)
- CNKI Scholar
- COPAC
- DTU Library
- Elektronische Zeitschriftenbibliothek (EZB)
- EuroPub Database
- Excellence in Research for Australia (ERA)
- Google Scholar
- Harvard Library
- Infotrieve
- JournalTOCs
- LOCKSS
- MIAR
- Mir@bel
- PKP Open Archives Harvester
- Publons
- ResearchGate
- SHERPA/RoMEO
- Standard Periodical Directory
- Technische Informationsbibliothek (TIB)
- UCR Library
- WorldCat
Contact
- Wendy SmithEditorial Assistant
- ijsp@ccsenet.org