Statistical Distribution of Roots of a Polynomial Modulo Primes III

Yoshiyuki Kitaoka¹

Correspondence: Yoshiyuki Kitaoka, E-mail: kitaoka@meijo-u.ac.jp

Received: November 19, 2017 Accepted: December 5, 2017 Online Published: December 15, 2017

Abstract

Let $f(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_0 \ (a_{n-1}, \dots, a_0 \in \mathbb{Z})$ be a polynomial with complex roots $\alpha_1, \dots, \alpha_n$ and suppose that a linear relation over \mathbb{Q} among $1, \alpha_1, \dots, \alpha_n$ is a multiple of $\sum_i \alpha_i + a_{n-1} = 0$ only. For a prime number p such that f(x) mod p has n distinct integer roots $0 < r_1 < \cdots < r_n < p$, we proposed in a previous paper a conjecture that the sequence of points $(r_1/p, \dots, r_n/p)$ is equi-distributed in some sense. In this paper, we show that it implies the equi-distribution of the sequence of $r_1/p, \dots, r_n/p$ in the ordinary sense and give the expected density of primes satisfying $r_i/p < a$ for a fixed suffix i and 0 < a < 1.

Keywords: polynomial, equi-distribution

1. Introduction

Let

$$f(x) = x^n + a_{n-1}x^{n-1} + \dots + a_0 \tag{1}$$

be a monic polynomial of degree $n \geq 2$ over the ring \mathbb{Z} of integers with complex roots $\alpha_1, \ldots, \alpha_n$. We put

$$Spl_X(f) := \{ p \le X \mid f(x) \text{ is fully splitting modulo } p \}$$

for a positive number X and $Spl(f) := Spl_{\infty}(f)$. Here the letter p denotes a prime number, and a polynomial f(x) is fully splitting modulo p if and only if

$$f(x) \equiv \prod_{i=1}^{n} (x - r_i) \bmod p$$
 (2)

for some integers r_i . We know that Spl(f) is an infinite set and that the density theorem due to Chebotarev holds; that is,

$$\lim_{X \to \infty} \frac{\#Spl(f, X)}{\#\{p \le X\}} = \frac{1}{[\mathbb{Q}(f) : \mathbb{Q}]'}$$

where \mathbb{Q} is the rational number field and $\mathbb{Q}(f)$ is a finite Galois extension field of \mathbb{Q} generated by all roots of f(x). In this note, we require the following condition on the above local roots r_1, \ldots, r_n :

$$0 \le r_1 \le r_2 \le \dots \le r_n < p. \tag{3}$$

The condition (3) determines the ith local root r_i uniquely. As a basic assumption, we assume that there is no non-trivial linear relation over \mathbb{Q} among roots $\alpha_1, \ldots, \alpha_n$ and 1 except for a trivial relation $\sum \alpha_i + a_{n-1} = 0$ in this paper. We know that any irreducible polynomial of prime degree, or a polynomial f of degree n with $[\mathbb{Q}(f):\mathbb{Q}]=n!$ has no non-trivial linear relation among roots and 1. An irreducible polynomial f of degree 4 has a non-trivial linear relation among roots and 1 if and only if f(x) is of the form g(h(x)) for quadratic polynomials g, h (Kitaoka, 2017). When the degree is greater than 5, there is no such a simple classification.

We consider the following two kinds of uniformity: Put

$$\hat{\mathfrak{D}}_n := \{ (x_1 \dots, x_n) \in [0, 1)^n \mid 0 \le x_1 \le \dots \le x_n < 1, \sum_{i=1}^n x_i \in \mathbb{Z} \}$$
 (4)

which is on the union of hyper-planes defined by $\sum x_i = k \in \mathbb{Z}$ in \mathbb{R}^n and for a set $D \subset [0,1)^n$ with $D = \overline{D^\circ}$

$$Pr_D(f, X) := \frac{\#\{p \in Spl_X(f) \mid (r_1/p, \dots, r_n/p) \in D\}}{\#Spl_X(f)},$$

where local roots r_i are supposed to satisfy properties (2), (3). We proposed (Kitaoka, 2017)

Conjecture 1

$$\lim_{X \to \infty} Pr_D(f, X) = \frac{vol(D \cap \hat{\mathfrak{D}}_n)}{vol(\hat{\mathfrak{D}}_n)}.$$
 (5)

Here, "vol" is the volume on the hyper-plane in \mathbb{R}^n . On the other hand, the classical concept of the uniformity is

Conjecture 2

$$\lim_{X \to \infty} \frac{\sum_{p \in Spl_X(f)} \#\{i \mid r_i/p \le a, 1 \le i \le n\}}{n \cdot \#Spl_X(f)} = a \tag{6}$$

for a real number $a \in [0, 1)$.

Due to (Duke, Friedlander & Iwaniec, 1995) and (Tóth, 2000), Conjecture 2 is true for a quadratic polynomial, however nothing is known if n > 2.

We stated in (Kitaoka, 2017) that Conjecture 2 follows from Conjecture 1 as far as we checked by the Monte Carlo method. We give the rigorous proof here, that is,

Theorem 1. Let f(x) be a monic polynomial over \mathbb{Z} of degree n. Under the assumption that there is no non-trivial linear relation over \mathbb{Q} among roots of f(x) and 1, Conjecture 1 implies Conjecture 2.

To prove this, putting $D_{i,a} := \{(x_1, \dots, x_n) \in [0,1)^n \mid x_i \le a\}$ for a given number $a \in [0,1)$, we have only to show

$$\sum_{i=1}^{n} \frac{vol(D_{i,a} \cap \hat{\mathfrak{D}}_n)}{n \cdot vol(\hat{\mathfrak{D}}_n)} = a \tag{7}$$

by (Kitaoka, 2017). To show it, we evaluate $\frac{vol(D_{i,n} \cap \hat{\mathfrak{D}}_n)}{vol(\hat{\mathfrak{D}}_n)}$ (Proposition 1), which gives as a by-product the density of primes p satisfying $r_i/p < a$:

Theorem 2. Let f(x) be a monic polynomial over \mathbb{Z} of degree n. Under the assumption that there is no non-trivial linear relation over \mathbb{Q} among roots of f(x) and 1. Then Conjecture 1 implies for $1 \le i \le n$

$$\lim_{X \to \infty} \frac{\#\{p \in Spl_X(f) \mid r_i/p < a\}}{\#Spl_X(f)}$$

$$= \frac{1}{(n-1)!} \sum_{0 \le l \le n \atop 1 \le l \le n-1} \sum_{k=i}^{n} (-1)^{h+k+n} \binom{n}{k} \sum_{m=1}^{n-1} \binom{k}{n-h-m+l} \binom{n-k}{m-l} M(l-ha)^{n-1},$$

where the binomial coefficient $\binom{A}{B}$ is supposed to vanish unless $0 \le B \le A$, and $M(x) := \max(x, 0)$.

When i=1, a simpler formula is given in Proposition 1 in the next section. Let us give numerical data for a polynomial $f(x) = x^6 + x^5 + \cdots + 1 = (x^7 - 1)/(x - 1)$. Put

$$Ex(a, m, i) := \frac{\#\{p \in Spl_X(f) \mid r_i/p < a\}}{\#Spl_X(f)} \quad (X = 10^{10} \cdot m)$$

and denote the expected limit given by the above theorem by T(a, i) and the error by

$$er(m) := 10^5 \max_{1 \le k \le 100, 1 \le i \le 6} |Ex(k/100, m, i) - T(k/100, i)|.$$

The graph of er(m) (m = 1, ..., 300) is below.

Conjecture 1 is generalized to a polynomial with a non-trivial linear relation among roots (Kitaoka, 2017). To treat such a polynomial, a more intrinsic proof of Theorem 1 independent of evaluation is desirable.

2. Proof

Hereafter, a real number a satisfies $0 \le a < 1$.

Lemma 1. For an integer k with $1 \le k \le n$, let

$$V(k) := vol\left(\left\{x \in [0,1)^n \middle| x_1, \dots, x_k \le a < x_{k+1}, \dots, x_n, \sum_{j=1}^n x_j \in \mathbb{Z}\right\}\right) \cos \theta, \tag{8}$$

for the angle θ of two hyper-planes defined by $x_i = 0$ and by $x_1 + \cdots + x_n = 0$ in \mathbb{R}^n . Then we have

$$\frac{vol(D_{i,a} \cap \hat{\mathfrak{D}}_n)}{vol(\hat{\mathfrak{D}}_n)} = \sum_{k=i}^n \binom{n}{k} V(k). \tag{9}$$

Proof. It is easy to see

$$vol(D_{i,a} \cap \widehat{\mathfrak{D}}_n)$$

$$= \sum_{k=i}^n vol\{x \mid 0 \le x_1 \le \dots \le x_k \le a < x_{k+1} \le \dots \le x_n < 1, \sum x_j \in \mathbb{Z}\}$$

$$= \sum_{k=i}^n \frac{1}{k!(n-k)!} vol\{x \mid 0 \le x_1, \dots, x_k \le a < x_{k+1}, \dots, x_n < 1, \sum x_j \in \mathbb{Z}\}$$

$$= \frac{1}{n!} \sum_{k=i}^n \binom{n}{k} vol\left\{x \mid 0 \le x_1, \dots, x_k \le a < x_{k+1}, \dots, x_n < 1, \sum_j x_j \in \mathbb{Z}\right\}$$

$$= vol(\widehat{\mathfrak{D}}_n) \sum_{k=i}^n \binom{n}{k} V(k),$$

using $vol(\hat{\mathfrak{D}}_n) = \frac{1}{n!\cos\theta}$.

To evaluate V(k), we quote the following (Feller, 1966):

Lemma 2. For a natural number k, the volume of a subset of the unit cube $[0,1)^k$ defined by $\{(x_1,\ldots,x_k)\mid x_1+\cdots+x_k\leq x\}$ is given by

$$U_k(x) := \frac{1}{k!} \sum_{i=0}^k (-1)^i \binom{k}{i} M(x-i)^k.$$

Lemma 3. For k = n, we have

$$V(n) = \frac{1}{(n-1)!} \sum_{0 \le i \le n, \atop 1 \le k \le n-1} (-1)^i \binom{n}{i} M(k-ia)^{n-1}.$$
 (10)

Proof. It is easy to see that

$$V(n) = vol(\{x \in \mathbb{R}^n \mid 0 \le x_1, \dots, x_n \le a, \sum_{i=1}^n x_i \in \mathbb{Z}\}) \cos \theta$$
$$= \sum_{k=1}^{n-1} vol(\{x \in \mathbb{R}^n \mid 0 \le x_1, \dots, x_n \le a, \sum_{i=1}^n x_i = k\}) \cos \theta$$

$$= \sum_{k=1}^{n-1} vol(\{x \in \mathbb{R}^{n-1} \mid 0 \le x_1, \dots, x_{n-1} \le a, 0 \le k - \sum_{i=1}^{n-1} x_i \le a\})$$

$$= \sum_{k=1}^{n-1} vol(\{x \in \mathbb{R}^{n-1} \mid 0 \le x_1, \dots, x_{n-1} \le a, \sum_{i=1}^{n-1} x_i \le k\})$$

$$- \sum_{k=1}^{n-1} vol(\{x \in \mathbb{R}^{n-1} \mid 0 \le x_1, \dots, x_{n-1} \le a, \sum_{i=1}^{n-1} x_i \le k - a\}).$$

The volume of the set $\{x \in \mathbb{R}^{n-1} \mid 0 \le x_1, \dots, x_{n-1} \le a, \sum_{i=1}^{n-1} x_i \le K\}$ is equal to

$$a^{n-1}vol(\{x \in \mathbb{R}^{n-1} \mid 0 \le t_1, \dots, t_{n-1} \le 1, \sum_{i=1}^{n-1} t_i \le K/a\})$$

$$= a^{n-1}U_{n-1}(K/a)$$

$$= \frac{a^{n-1}}{(n-1)!} \sum_{i=0}^{n-1} (-1)^i \binom{n-1}{i} M(K/a-i)^{n-1}$$

$$= \frac{1}{(n-1)!} \sum_{i=0}^{n-1} (-1)^i \binom{n-1}{i} M(K-ia)^{n-1}.$$

Therefore we have

$$V(n) = \frac{1}{(n-1)!} \sum_{k=1}^{n-1} \sum_{i=0}^{n-1} (-1)^{i} \binom{n-1}{i} \{ M(k-ia)^{n-1} - M(k-(i+1)a)^{n-1} \}$$

$$= \frac{1}{(n-1)!} \sum_{k=1}^{n-1} \sum_{i=0}^{n-1} (-1)^{i} \binom{n-1}{i} M(k-ia)^{n-1}$$

$$+ \frac{1}{(n-1)!} \sum_{k=1}^{n-1} \sum_{i=1}^{n} (-1)^{i} \binom{n-1}{i-1} M(k-ia)^{n-1}$$

$$= \frac{1}{(n-1)!} \sum_{k=1}^{n-1} \sum_{i=0}^{n} (-1)^{i} \binom{n}{i} M(k-ia)^{n-1}.$$

Lemma 4. *In case of* $1 \le k \le n-1$ *, we have*

$$V(k) = \sum_{m=1}^{n-1} (U_{k,n-1}(m-a) - U_{k,n-1}(m-1)), \tag{11}$$

where

$$U_{k,r}(t) := vol\{x \in [0,1)^r \mid x_1, \dots, x_k \le a < x_{k+1}, \dots, x_r, \sum_{i=1}^r x_j < t\}.$$
 (12)

Proof. We see that

$$V(k) = \sum_{m=1}^{n-1} vol \left\{ x \in [0,1)^n \middle| x_1, \dots, x_k \le a < x_{k+1}, \dots, x_n, \sum_{j=1}^n x_j = m \right\} \cos \theta$$

$$= \sum_{m=1}^{n-1} vol \left\{ x \in [0,1)^{n-1} \middle| x_1, \dots, x_k \le a < x_{k+1}, \dots, x_{n-1}, a < m - \sum_{j=1}^{n-1} x_j < 1 \right\}$$

$$= \sum_{m=1}^{n-1} (U_{k,n-1}(m-a) - U_{k,n-1}(m-1)).$$

Lemma 5. For integers r, k with $1 \le k \le r$, we have

$$U_{k,r+1}(t) = \int_a^1 U_{k,r}(t-w)dw.$$

Proof. This follows from the equation

$$U_{k,r+1}(t) = \int_{x_{r+1}=a}^{1} (\int_{D} dx_{1}, \dots dx_{r}) dx_{r+1}$$

where the domain D is given by the conditions $0 \le x_1, \dots, x_k \le a < x_{k+1}, \dots, x_r, \sum_{j=1}^r x_j < t - x_{r+1}$.

Lemma 6.

$$\int_{a}^{1} M(t-w)^{m} dw = \frac{1}{m+1} \{ M(t-a)^{m+1} - M(t-1)^{m+1} \}.$$

Proof. The left-hand side is equal to

$$\int_{a}^{1} \max(t - w, 0)^{m} dw$$

$$= \int_{t-a}^{t-1} \max(W, 0)^{m} (-dW)$$

$$= -\int_{-\infty}^{t-1} \max(W, 0)^{m} dW + \int_{-\infty}^{t-a} \max(W, 0)^{m} dW$$

$$= -\frac{1}{m+1} M(t-1)^{m+1} + \frac{1}{m+1} M(t-a)^{m+1}.$$

Lemma 7. For integers j, k with $j \ge 0, k \ge 1$, $U_{k,k+j}(t)$ is equal to

$$\frac{1}{(k+j)!} \sum_{i=0}^{k} (-1)^{i} \binom{k}{i} \sum_{h=0}^{j} (-1)^{j+h} \binom{j}{h} M(t+h-j-(i+h)a)^{k+j}. \tag{13}$$

Proof. Suppose that j = 0; then $U_{k,k}(t)$ equals

$$vol\{x \in [0,1)^k \mid x_1, \dots, x_k \le a, \sum_{j=1}^k x_j < t\}$$

$$= a^k U_k(t/a)$$

$$= \frac{1}{k!} \sum_{i=0}^k (-1)^i \binom{k}{i} M(t-ia)^k.$$

Second, suppose that the equation (13) is true; then we see that $U_{k,k+j+1}(t)$ equals

$$\int_{a}^{1} U_{k,k+j}(t-w)dw$$

$$= \frac{1}{(k+j)!} \sum_{i=0}^{k} (-1)^{i} {k \choose i} \sum_{h=0}^{j} (-1)^{j+h} {j \choose h} \int_{a}^{1} M(t-w+h-j-(i+h)a)^{k+j} dw$$

$$= \frac{1}{(k+j)!} \sum_{i=0}^{k} (-1)^{i} {k \choose i} \sum_{h=0}^{j} (-1)^{j+h} {j \choose h} \times$$

$$\begin{split} &\frac{1}{k+j+1}\{M(t+h-j-(i+h+1)a)^{k+j+1}-M(t+h-j-1-(i+h)a)^{k+j+1}\}\\ &=\frac{1}{(k+j+1)!}\sum_{i=0}^{k}(-1)^{i}\binom{k}{i}\times\\ &\left\{\sum_{h=1}^{j+1}(-1)^{j+h+1}\binom{j}{h-1}M(t+h-j-1-(i+h)a)^{k+j+1}-\sum_{h=0}^{j}(-1)^{j+h}\binom{j}{h}M(t+h-j-1-(i+h)a)^{k+j+1}\right\}\\ &=\frac{1}{(k+j+1)!}\sum_{i=0}^{k}(-1)^{i}\binom{k}{i}\times\left\{\sum_{h=1}^{j}(-1)^{j+h+1}\binom{j}{h-1}+\binom{j}{h}M(t+h-j-1-(i+h)a)^{k+j+1}+M(t-(i+j+1)a)^{k+j+1}-(-1)^{j}M(t-j-1-ia)^{k+j+1}\right\}\\ &=\frac{1}{(k+j+1)!}\sum_{i=0}^{k}(-1)^{i}\binom{k}{i}\times\\ &\left\{\sum_{h=1}^{j}(-1)^{j+h+1}\binom{j+1}{h}M(t+h-j-1-(i+h)a)^{k+j+1}+M(t-(i+j+1)a)^{k+j+1}-(-1)^{j}M(t-j-1-ia)^{k+j+1}\right\}, \end{split}$$

which completes the induction.

Lemma 8. For $1 \le k \le n-1$, we have

$$V(k) = \frac{1}{(n-1)!} \sum_{0 \le h \le n \atop 1 \le l \le n-1} (-1)^{n+k+h} \sum_{m=1}^{n-1} \binom{k}{n-h-m+l} \binom{n-k}{m-l} M(l-ha)^{n-1}.$$

Proof. For $1 \le k, m \le n - 1$, we have

$$\begin{split} &(n-1)!\{U_{k,n-1}(m-a)-U_{k,n-1}(m-1)\}\\ &=\sum_{i,h\in\mathbb{Z}}(-1)^i\binom{k}{i}(-1)^{n-1-k+h}\binom{n-1-k}{h}M(m-a+h-(n-1-k)-(i+h)a)^{n-1}\\ &\quad -\sum_{i,h\in\mathbb{Z}}(-1)^i\binom{k}{i}(-1)^{n-1-k+h}\binom{n-1-k}{h}M(m-1+h-(n-1-k)-(i+h)a)^{n-1}\\ &=\sum_{h,l\in\mathbb{Z}}(-1)^{n+k+h}\binom{k}{n+l-h-m}\binom{k}{m-l}+\binom{n-1-k}{m-l-1}M(l-ha)^{n-1}\\ &=\sum_{0\leq h\leq n,}(-1)^{n+k+h}\binom{k}{n+l-h-m}\binom{n-k}{m-l}M(l-ha)^{n-1}, \end{split}$$

where the restrictions on h, l follow from conditions $1 \le k, m \le n - 1, 0 \le n + l - h - m \le k, 0 \le m - l \le n - k$. Lemma 4 completes the proof.

Lemma 9. Let m, n be integers satisfying $0 \le m \le n - 1$. Then we have

$$\sum_{k=0}^{m} (-1)^k \binom{n}{k} = (-1)^m \binom{n-1}{m}.$$
 (14)

For a polynomial $P(x) = c_n x^n + \cdots + c_0$, we have

$$\sum_{k=0}^{n} (-1)^k P(k) \binom{n}{k} = c_n (-1)^n \, n!. \tag{15}$$

These are well-known and we omit the proof.

Proposition 1. For an integer i with $1 \le i \le n$ and a real number $a \in [0, 1)$, we have

$$(n-1)! \operatorname{vol}(D_{i,a} \cap \widehat{\mathfrak{D}}_n)/\operatorname{vol}(\widehat{\mathfrak{D}}_n)$$

$$= \sum_{0 \le h \le n} \sum_{k=i}^n (-1)^{h+k+n} \binom{n}{k} \left(\binom{n}{h} - \sum_{h \le q \le \max(l,h-1)} \binom{k}{q-h} \binom{n-k}{n-q} \right) M(l-ha)^{n-1}.$$

In particular, we have for i = 1

$$vol(D_{1,a} \cap \hat{\mathfrak{D}}_n)/vol(\hat{\mathfrak{D}}_n) = \sum_{0 \le h \le n, \ 1 \le l \le n-1} C_1(l,h)M(l-ha)^{n-1}, \tag{16}$$

where

$$C_1(l,h) = \frac{1}{(n-1)!} \begin{cases} (-1)^{n+h+1} \binom{n}{h} & \text{if } h \ge l+1, \\ 0 & \text{if } 1 \le h \le l, \\ (-1)^{n+l+1} \binom{n-1}{l} & \text{if } h = 0. \end{cases}$$

Proof. By Lemma 1, we have

$$(n-1)! \operatorname{vol}(D_{i,a} \cap \widehat{\mathfrak{D}}_{n})/\operatorname{vol}(\widehat{\mathfrak{D}}_{n})$$

$$= (n-1)! \sum_{k=i}^{n} \binom{n}{k} V(k)$$

$$= (n-1)! V(n) + (n-1)! \sum_{k=i}^{n-1} \binom{n}{k} V(k)$$

$$= \sum_{\substack{0 \le h \le n \\ 1 \le l \le n-1}} (-1)^h \binom{n}{h} M(l-ha)^{n-1}$$

$$+ \sum_{k=i}^{n-1} \binom{n}{k} \sum_{\substack{0 \le h \le n \\ 1 \le l \le n-1}} (-1)^{n+k+h} \sum_{m=1}^{n-1} \binom{n}{n-h-m+l} \binom{n-k}{m-l} M(l-ha)^{n-1}$$

$$= \sum_{k=i}^{n} \binom{n}{k} \sum_{\substack{0 \le h \le n \\ 1 \le l \le n-1}} (-1)^{n+k+h} \sum_{m=1}^{n-1} \binom{n}{n-h-m+l} \binom{n-k}{m-l} M(l-ha)^{n-1},$$

since the binomial coefficient $\binom{0}{m-l}$ vanishes unless m=l. The partial sum $\sum_{m=1}^{n-1} \binom{k}{n-l-m+l} \binom{n-k}{m-l}$ is equal to

$$\sum_{1-l \le q \le n-1-l} \binom{k}{n-h-q} \binom{n-k}{q}$$

$$= \sum_{0 \le q \le \min(n-1-l,n-h)} \binom{k}{n-h-q} \binom{n-k}{q}$$

$$= \binom{n}{n-h} - \sum_{\min(n-1-l,n-h)+1 \le q \le n-h} \binom{k}{n-h-q} \binom{n-k}{q}$$

$$= \binom{n}{h} - \sum_{h \le q \le \max(l,h-1)} \binom{k}{q-h} \binom{n-k}{n-q}.$$
(17)

Let us assume that i = 1 to show (16). Putting

$$T(l,h) := \sum_{k=1}^{n} (-1)^{h+k+n} \binom{n}{k} \binom{n}{h} - \sum_{h \le q \le \max(l,h-1)} \binom{k}{q-h} \binom{n-k}{n-q}$$
$$= -(-1)^{h+n} \binom{n}{h} - \sum_{k=1}^{n} (-1)^{h+k+n} \binom{n}{k} \sum_{q=h}^{\max(l,h-1)} \binom{k}{q-h} \binom{n-k}{n-q},$$

we have only to prove $T(l,h) = (n-1)! C_1(l,h)$. It is obviously true if $h \ge l+1$, since the partial sum on q is empty. In case of h = 0, we see that T(l,0) is equal to

$$-(-1)^{n} - \sum_{k=1}^{n} (-1)^{k+n} \binom{n}{k} \sum_{q=0}^{l} \binom{k}{q} \binom{n-k}{n-q}$$

$$= -(-1)^{n} - \sum_{k=1}^{n} (-1)^{k+n} \binom{n}{k} \sum_{q=0}^{l} \delta_{k,q}$$

$$= -(-1)^{n} - \sum_{k=1}^{l} (-1)^{k+n} \binom{n}{k}$$

$$= -\sum_{k=0}^{l} (-1)^{k+n} \binom{n}{k}$$

$$= -(-1)^{n+l} \binom{n-1}{l}.$$

Lastly assume that $1 \le h \le l$. The sum $T(l,h) + (-1)^{h+n} \binom{n}{h}$ is equal to

$$-\sum_{k=1}^{n} (-1)^{h+k+n} \binom{n}{k} \sum_{q=h}^{l} \binom{k}{q-h} \binom{n-k}{n-q}$$

$$= -\sum_{q=h}^{l} (-1)^{h+n} \binom{n}{h} \binom{n-h}{q-h} \sum_{k=1}^{n} (-1)^{k} \binom{h}{q-k}$$

$$= -\sum_{q=h}^{l} (-1)^{h+n} \binom{n}{h} \binom{n-h}{q-h} (-1)^{q} \sum_{k=0}^{q-1} (-1)^{k} \binom{h}{k}$$

$$= -\sum_{q=h}^{l} (-1)^{h+n} \binom{n}{h} \binom{n-h}{q-h} (-1)^{q} (-1)^{q-1} \binom{h-1}{q-1}$$

$$= \sum_{q=h}^{l} (-1)^{h+n} \binom{n}{h} \binom{n-h}{q-h} \binom{h-1}{q-1}$$

$$= (-1)^{h+n} \binom{n}{h},$$

which implies T(l, h) = 0.

The proposition gives Theorem 2 by (17), and we see that the left-hand side of (7) is the sum of $C(l,h)M(l-ha)^{n-1}$ over integers l,h satisfying

$$1 \le l \le n - 1, 0 \le h \le n,\tag{18}$$

where

$$C(l,h) := \frac{1}{n!} \sum_{1 \le i \le k \le n} (-1)^{h+k+n} \binom{n}{k} \binom{n}{h} - \sum_{h \le q \le \max(l,h-1)} \binom{k}{q-h} \binom{n-k}{n-q}$$

$$= \frac{1}{n!} \sum_{0 \le k \le n} (-1)^{h+k+n} k \binom{n}{k} \binom{n}{h} - \sum_{h \le q \le \max(l,h-1)} \binom{k}{q-h} \binom{n-k}{n-q}$$

$$= \frac{-1}{n!} \sum_{0 \le k \le n} (-1)^{h+k+n} k \binom{n}{k} \sum_{h \le q \le \max(l,h-1)} \binom{k}{q-h} \binom{n-k}{n-q}. \tag{19}$$

To prove (7), we will show

$$C(l,h) = \begin{cases} \frac{-(-1)^{n-l}}{(n-1)!} \binom{n-2}{l-1} & \text{if } h = 0, \\ \frac{(-1)^{n-l}}{(n-1)!} \binom{n-2}{l-1} & \text{if } h = 1, \\ 0 & \text{if } h \ge 2. \end{cases}$$
 (20)

Under the equations (20), Theorem 1 is proved as follows: The left-hand side of (7) is equal to

$$\sum_{l=1}^{n-1} \frac{-(-1)^{n-l}}{(n-1)!} \binom{n-2}{l-1} M(l)^{n-1} + \sum_{l=1}^{n-1} \frac{(-1)^{n-l}}{(n-1)!} \binom{n-2}{l-1} M(l-a)^{n-1}$$

$$= \sum_{l=1}^{n-1} \frac{-(-1)^{n-l}}{(n-1)!} \binom{n-2}{l-1} (l^{n-1} - (l-a)^{n-1})$$

$$= \sum_{l=0}^{n-2} \frac{(-1)^{n+l}}{(n-1)!} \binom{n-2}{l} ((n-1)al^{n-2} + O(l^{n-3}))$$

$$= a.$$

Suppose h = 0; we see that

$$C(l,0) = \frac{-1}{n!} \sum_{0 \le k \le n} (-1)^{k+n} k \binom{n}{k} \sum_{0 \le q \le l} \binom{k}{q} \binom{n-k}{n-q}$$

$$= \frac{-1}{n!} \sum_{0 \le k \le n} (-1)^{k+n} k \binom{n}{k} \sum_{0 \le q \le l} \delta_{k,q}$$

$$= \frac{-1}{n!} \sum_{0 \le k \le l} (-1)^{k+n} k \binom{n}{k}$$

$$= \frac{-1}{(n-1)!} \sum_{0 \le k \le l-1} (-1)^{k+n} \binom{n-1}{k-1}$$

$$= \frac{-1}{(n-1)!} \sum_{0 \le k \le l-1} (-1)^{k+n+1} \binom{n-1}{k}$$

$$= \frac{(-1)^{n+l+1}}{(n-1)!} \binom{n-2}{l-1},$$

which is (20).

Second we see that

$$C(l,1) = \frac{-1}{n!} \sum_{0 \le k \le n} (-1)^{1+k+n} k \binom{n}{k} \sum_{1 \le q \le l} \binom{k}{q-1} \binom{n-k}{n-q}.$$

Unless $q - 1 \le k$ and $n - q \le n - k$, binomial coefficients vanish, hence we may assume that q = k or q = k + 1, and we see

$$C(l,1) = \frac{-1}{n!} \sum_{0 \le k \le n} (-1)^{1+k+n} k \binom{n}{k} \sum_{1 \le q \le l} (k\delta_{q,k} + (n-k)\delta_{q,k+1})$$

$$= \frac{-1}{n!} \sum_{0 \le k \le l} (-1)^{1+k+n} k^2 \binom{n}{k} + \frac{-1}{n!} \sum_{0 \le k \le l-1} (-1)^{1+k+n} k(n-k) \binom{n}{k}$$

$$= \frac{(-1)^n}{(n-1)!} \sum_{0 \le k \le l-1} (-1)^k k \binom{n}{k} + \frac{1}{n!} (-1)^{l+n} l^2 \binom{n}{l}$$

$$= \frac{(-1)^{n}n}{(n-1)!} \sum_{0 \le k \le l-1} (-1)^{k} \binom{n-1}{k-1} + \frac{1}{n!} (-1)^{l+n} l^{2} \binom{n}{l}$$

$$= \frac{(-1)^{n+1}n}{(n-1)!} (-1)^{l-2} \binom{n-2}{l-2} + \frac{1}{n!} (-1)^{l+n} l^{2} \binom{n}{l}$$

$$= \frac{(-1)^{n+l}}{(n-1)!} \binom{n-2}{l-1}.$$

Finally, assume that $h \ge 2$; hence $1 \le l \le n - 1, 2 \le h \le n$ are supposed. By (19), we have

$$-n!C(l,h) = \sum_{h \le q \le \max(l,h-1)} (-1)^{h+n} \binom{n}{h} \binom{n-h}{n-q} \sum_{0 \le k \le n} (-1)^k k \binom{h}{q-k}$$

$$= \sum_{h \le q \le \max(l,h-1)} (-1)^{h+n} \binom{n}{h} \binom{n-h}{n-q} \sum_{0 \le k \le q} (-1)^{q+k} (q-k) \binom{h}{k}$$

$$= 0.$$

since

$$\sum_{0 \le K \le q} (-1)^{q+K} (q-K) \binom{h}{K} = (-1)^q \sum_{0 \le K \le h} (-1)^K (q-K) \binom{h}{K} = 0$$

by $h \ge 2$. Thus we have completed the proof.

References

Duke, W., Friedlander, J. B., & Iwaniec, H. (1995). Equidistribution of roots of a quadratic congruence to prime moduli. *Ann. of Math.*, 141, 423-441. https://doi.org/10.2307/2118527

Feller, W. (1966). An introduction to probability theory and its applications. vol. 2, New York, J. Wiley.

Kitaoka, Y. (2017). Notes on the distribution of roots modulo a prime of a polynomial. *Unif. Distrib. Theory,* 12, 91-117.

Tóth. Á. (2000). Roots of Quadratic congruences, *Internat. Math. Res. Notices*, 719-739. https://doi.org/10.1155/S1073792800000404

Copyrights

Copyright for this article is retained by the author(s), with first publication rights granted to the journal.

This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).