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Abstract

Let f(x) = x" + QX"+ -+ a9 (@u_1,...,a00 € Z) be a polynomial with complex roots ay, ..., a, and suppose
that a linear relation over Q among 1,a4,...,a, is a multiple of };a; + a4,-1 = 0 only. For a prime number
p such that f(x) mod p has n distinct integer roots 0 < r{ < --- < r, < p, we proposed in a previous paper a
conjecture that the sequence of points (r1/p, ..., ,/p) is equi-distributed in some sense. In this paper, we show
that it implies the equi-distribution of the sequence of r1 /p, ..., r,/p in the ordinary sense and give the expected
density of primes satisfying r;/p < a for a fixed suffixiand 0 < a < 1.

Keywords: polynomial, equi-distribution
1. Introduction

Let

1

fx)=x"+a,4x"" +---+a (1)

be a monic polynomial of degree 1 (> 2) over the ring Z of integers with complex roots a4, ..., a,. We put
Splx(f) := {p < X | f(x) is fully splitting modulo p}

for a positive number X and Spl(f) := Spl.(f). Here the letter p denotes a prime number, and a polynomial
f(x) is fully splitting modulo p if and only if

flx) = H(x —r;) mod p 2)
i=1

for some integers r;. We know that Spl(f) is an infinite set and that the density theorem due to Chebotarev
holds; that is,
o #Spl(f, X) 1
Xoe #p <X} [Q(f): QI
where Q is the rational number field and Q(f) is a finite Galois extension field of Q generated by all roots of
f(x). In this note, we require the following condition on the above local roots 4, ..., 7, :

0<r<n---<r,<p. ®)

The condition (3) determines the ith local root r; uniquely. As a basic assumption, we assume that there is
no non-trivial linear relation over Q among roots a;, ..., a, and 1 except for a trivial relation } a; + 4,1 = 0
in this paper. We know that any irreducible polynomial of prime degree, or a polynomial f of degree n with
[Q(f) : Q] = n! has no non-trivial linear relation among roots and 1. An irreducible polynomial f of degree
4 has a non-trivial linear relation among roots and 1 if and only if f(x) is of the form g(k(x)) for quadratic
polynomials g, /i (Kitaoka, 2017). When the degree is greater than 5, there is no such a simple classification.

We consider the following two kinds of uniformity: Put

Dy = {1, %) €0,1)" |0 <21 <+ < X <1,in€Z} (4)
=1

which is on the union of hyper-planes defined by ¥ x; = k € Z in R” and for a set D  [0,1)" with D = D°

#p € Splx(f) | (r1/p,...,ra/p) € D}
#Splx(f) ’

PTD(f, X) =
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where local roots ; are supposed to satisfy properties (2), (3). We proposed (Kitaoka, 2017)

Conjecture 1
vol(DND,)

lim Prp(f,X) = =
lim p(f, X) w0l

©)

Here, “vol” is the volume on the hyper-plane in IR”. On the other hand, the classical concept of the uniformity
is

Conjecture 2
Ypespix #i | ri/p < a,1 < i <n)
lim =Pespx) irp _, "
X—>o0 n- #Splx(f)

for a real number a € [0, 1).

Due to (Duke, Friedlander & Iwaniec, 1995) and (Té6th, 2000), Conjecture 2 is true for a quadratic polynomial,
however nothing is known if n > 2.

We stated in (Kitaoka, 2017) that Conjecture 2 follows from Conjecture 1 as far as we checked by the Monte
Carlo method. We give the rigorous proof here, that is,

Theorem 1. Let f(x) be a monic polynomial over Z. of degree n. Under the assumption that there is no non-trivial linear
relation over Q among roots of f(x) and 1, Conjecture 1 implies Conjecture 2.

To prove this, putting D, := {(x1,...,x,) € [0,1)" | x; < a} for a given number a € [0, 1), we have only to show

Zn: vol(D;; N D,,)
P e i—1

= n- vol(D,) @)

vol(D, nd,

by (Kitaoka, 2017). To show it, we evaluate —— B ) (Proposition 1), which gives as a by-product the density

of primes p satisfying r;/p <a:

Theorem 2. Let f(x) be a monic polynomial over Z. of degree n. Under the assumption that there is no non-trivial linear
relation over Q among roots of f(x) and 1. Then Conjecture 1 implies for 1 <i<n

#p € Splx(f) | ri/p < a}

i
s #Splx(f)
_ 1 - hkrn [T v k n—k n-1
-1 ;;(_1) k) ea\n—n—m+1 i — g MA=ha)™
Telen m=

where the binomial coefficient (’g) is supposed to vanish unless 0 < B < A, and M(x) := max(x, 0).

When i = 1, a simpler formula is given in Proposition 1 in the next section. Let us give numerical data for a
polynomial f(x) =x®+x°+---+1=(x" —=1)/(x — 1). Put

#p € Splx(f) | ri/p < a}
#5plx(f)

and denote the expected limit given by the above theorem by T(a, i) and the error by

Ex(a,m, 1) := (X =10 - m)

er(m):=10° max  |Ex(k/100,m,i) — T(k/100, ).
1<k<100,1<i<6

The graph of er(m) (m =1, ...,300) is below.

Conjecture 1 is generalized to a polynomial with a non-trivial linear relation among roots (Kitaoka, 2017). To
treat such a polynomial, a more intrinsic proof of Theorem 1 independent of evaluation is desirable.

2. Proof

Hereafter, a real number a satisfies 0 <a < 1.
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Graph of errors

Lemma 1. For an integer k with 1 < k < n, let

V(k) :=vol|{x €[0,1)" xl,...,xk§a<xk+1,...,xn,2xj€Z cos 0, (8)

j=1

for the angle 6 of two hyper-planes defined by x; = 0 and by xy + - - - + x, = 0 in R". Then we have

vol(Di, N f)n) B = (n
wl(®) ;(k)v(k)‘ ©

Proof. It is easy to see

vol(D;, N @n)

n
:Zvol{xIOleS---Skaa<xk+1s-'-an<1,ijeZ}
k=i

n

1
:;mvol{xl0Sx1,...,xk§a<xk+1,...,xn <1,ijeZ}

n

1

n
= (k)vol xOSx1,...,xk§a<xk+1,...,xn<1,ij€Z
k=i j

=o0l(d,) ) (’;)V(k»
k=i
1

using vol(D,) = Teesa

To evaluate V(k), we quote the following (Feller, 1966):
Lemma 2. For a natural number k, the volume of a subset of the unit cube [0, 1)k defined by {(x1, ..., %) | X1+ -+x% < x}
is given by
1 ¢ k
— i ok
) = IZO‘( 1) (i)M(x iy,
Lemma 3. For k = n, we have

1 i(n e
VoD = oy Z (—1)(i)M(k—za) 1 (10)

0<i<n,
1<k<n-1

Proof. It is easy to see that

V(n) =vol(fx e R" |0 < xq1,...,%, Sa,Zx,- € Z})cos O

i=1

n-1 n
=Zvol({xe]R” |0 <x1,...,%, Sa,in =k})cos O
k=1 i=1
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—_

n— n—

1
=Y vol(fx e R [0 < x4, ..., Xt Sa,Osk—inSa})
i=1

i=

—_

]
—_
[y

e
vol(lx e R 0<xy,..., 1 <a, ) x <
=1 i

P

D

P
I
—_

[y

n—
- vol(lx e R" |0 <xy,..., %1 <4,
1 =

n—-1
xi <k —a}).
1

o~
I

The volume of the set {x e R™™1 |0 < xy,...,x,-1 < 4, Zfz_ll x; < K} is equal to

n—1
" ool(x e R™V |0 <ty ... by < 1,2 t; < K/a})
i=1

=q"! Uy-1(K/a)

— ! v in-1 N
=D ;(—1) ( i )M(K/a — )
_ 1 v ifn— 1 - \1—1
= m ;(—1) ( ; )M(K —ia)".
Therefore we have
_ 1 A% ifn— 1 -1 ; n-1
V(n) =) L. izo(—l)( ; ){M(k— ia)"" — M(k — (i + 1)a)*}
1 n-1 n-1 , n—1 o
=D kzzl‘ 2 (-1) ( )M(k — ia)
1 n-1 n i n—1 o
= 1) ; - 1) (i— 1)M(k_ in)
n-1 n
__ 1 (—1)1‘(’7)M(k — ia)" L,
n-DE= !
O
Lemma 4. In caseof 1 < k <n -1, we have
n—1
V() = Y (Uia (m = @) = U (m = 1)), (11)
m=1
where
U (t) :=volix € [0,1) | x1,...,x, <a < xk+1,...,x,,Zx]- <t} (12)

=1

Proof. We see that

n

=
[y

V(k) = Zvol xe[0,1)" |x1,..., x5, <a< xk+1,...,xn,Zx]- =m ycosB
m=1 j=1
n—1 n—1
= vol {x €[0,1)" |x1,..., % <4 < Xps1, ..., Xn_1,d < 1 — xj<1
m=1 j=1

=
|
=

(Urp-1(m — a) — Ug 1 (m — 1)).

3
1]
—_
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Lemma 5. For integers r,k with 1 < k < r, we have
1
Ui (t) = f Uy, (t — w)dw.
a

Proof. This follows from the equation

1
Uy ri1(t) = f ( f dxy, .. .dx,)dx,.
Xrs1=a JD

where the domain D is given by the conditions 0 < x1,...,x <a < Xg41,..., Xy, Z;zl Xj <t—Xp1.

Lemma 6.

f M(t — w)"dw = . M(t a)™ — M(t — 1)1,
Proof. The left-hand side is equal to

1
f max(t — w,0)"dw

t—1
f max(W, 0)"(—dW)
t—a

t—1 t—a
- f max(W,0)"dW + f max(W,0)"dW

—M(t _ a)m+1‘

1
- t_1m+l
m+1M( e +1

Lemma 7. For integers j,k with j > 0,k > 1, Uy (t) is equal to

1 Lo i o N
(k+ ) & Z(— )( )Z(';( 1)]”’(2)1\4(15 +h—j— (i +h)a),

Proof. Suppose that j = 0; then Uy(t) equals

k
vol{x € [0,1)" [ x1,..., % < a,ij <t}
j=1

=a"U(t/a)
k
;, Z( 1) (k)M(t —ia).

i=0

Second, suppose that the equation (13) is true; then we see that Uk +1(¢) equals
1
f uk,kﬂ'(t — w)dw
a

(ki])' Z(— )( )Z( 1)]+h( )f M(t —w +h = j = (i + h)a)*dw

h=0

T Z(_ )( )Z(_W(%{)X

h=0
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————(M(t+h—j—(G+h+ D) Mt +h—j—1-(+ha)H*
k+j+1 J J

IS SRR S
‘(k+j+1)!§(_) i)

j+1 . . .
{;(—1)#%1(’1 1 1)M(t +h—j-1-(G+ Hya)c i+l - hzz()‘(_l)jJrh(}]l)M(t +h—j-1-(G+ h)a)k*f”}

k j . )
:m Z(—l)i(’lf) x {Z(_l)mm ((h i 1) ¥ (é)) Mt + 1= j =1 (i + W)+
" =0 =1

Mt = (i + j+ Da) I = (<1)M(t - j - 1 - ia)*1*7)
1 5o [k
ki) ;(_1) (i)x
j .
{Z(—1)1+h+1(] Z 1)M(t +h—j—1—(@+ha) T+ Mt - @+ j+ Da) ™ — (=1 M(t—j—1- ia)k+/+1},
h=1

which completes the induction. O

Lemma 8. For1 <k <n -1, we have

— 1 n+k+h v k n—k _ n-1
V0= Gy 2, D mzzl (n —h—m+ l)(m - Z)M(l hay™™.

0<h<n
1<l<n-1

Proof. For1 <k,m <n -1, we have
(n = DU n-1(m — a) — Uy -1(m — 1)}

= 2 (_1)1'(’;)(—1)”-1-“’1(” -1 k)M(m —a+h—m—=1-k —(@i+hua)""!

iheZ h
_ Z (—1)i(]f)(—1)n_1_k+h(n - }11 - k)M(m ~1+h=(—-1-Fk (@i +ha)"
ihez !
k n—-1-—k n—1—k
= _q\n+k+h i »
S RS IR (et Nt
k n— k

= _q\n+k+h ~ -
= (;"’ (-1) (n +1-h- m)(m _ Z)M(l ha)"™",

1<l<n-1

where the restrictions on 4, follow from conditions 1 <km <n-1,0<n+l-h-m<k0<m-1<n-k.
Lemma 4 completes the proof. |

Lemma 9. Let m,n be integers satisfying 0 < m < n — 1. Then we have

. n mfn—1
Z(—l)k(k)=<—1> ( - ) (14)

k=0
For a polynomial P(x) = c,x" + - - - + ¢y, we have
. n
Z(—l)kP(k)(k) = cu(=1)"n. (15)
k=0
These are well-known and we omit the proof.
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Proposition 1. For an integer i with 1 < i < n and a real number a € [0, 1), we have

(n - 1)!vol(D;, N D,)/vol(D,,)

. e[\ (1 k \(n-k .
g A
0<hsn k=i h<g<max(l,h—1)

1<i<n-1

In particular, we have fori =1

vol(D1, N D,)/vol(D,) = Z C1(L, hM(I — ha)" ™}, (16)
0<h<n,
1<i<n-1
where
. (1Y ifh>1+1,
Ci(l,h) = =1 ifl<h<l,

(_1)n+l+1(7l;1) ifh =0.

Proof. By Lemma 1, we have

(n = 1)!vol(D;, N D,)/vol(D,)

=n-11Y (Z)V(k)

k=i

n-1
=(n =DV + (-1 (Z)V(k)

k=i

Y (—1)h(Z)M(l — ha)" !

0<h<n
1<l<n-1

S DI ML (ot Ve

0<h<n
1<l<n-1

S 3 DILRIES o LY (o D

O<h<n
1<i<n-1

since the binomial coefficient (mo_l) vanishes unless 1 = I. The partial sum Y./} e +I)(m ) is equal to

Y. ( K )(n - k)
gt =al\ g
Z ( k )(n -~ k)
0<g<min(n—1-I,n—h) n—h-— q q
< -l
(n - h) min(n—l_l,;l‘)+1sqsn_h (I’l — h — q q
n il
e | a7
(h) hsmé;(],hl) (‘7 —-h)\n—q

Let us assume that i = 1 to show (16). Putting

k \[n-k
T(Lh) =) (- 1)h+k+n( ) [(n) ( )( )]
Z h h<qﬂ§x(l,h]) q=h\n—-q

n

~ . (1 ) — max(l,h-1) k n—k
== - ) L Ll s)

k=1 q=h
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we have only to prove T(I,h) = (n — 1)! C1(l, h). It is obviously true if i > [ + 1, since the partial sum on g is
empty. In case of h = 0, we see that T(/,0) is equal to

n +n| T
- (1) Z( Dt (k)
1))1 Z( 1 k+n(’;) 6kq
— (_1)11 _ 2(_1)k+n(7;)
k=1
!
- _ Z(_l)kﬂq(;(l)
k=0

n+ n-1
o)

Lastly assume that 1 </ < 1. The sum T(l, k) + (-1)"*"(}) is equal to

DX ) ¥
X ) v
Bl
R ieen()
DI e
=<—1>h+"(h),

which implies T(l, h) = 0. O

The proposition gives Theorem 2 by (17), and we see that the left-hand side of (7) is the sum of C(I, h)M(I — ha)"~!
over integers I, h satisfying

E‘

R‘

1<l<n-1,0<h<n, (18)

where

1 k[ PV ] (7 k \(n—k
ey L (k>[(h)y<q<m§,h_n(q h)(n—q)]

___1 _1\h+k+n n k n—k
"~ n! Z =D k k —hf\n—-q) (19
h<q<max(lh 1)

0<k<n

Q
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To prove (7), we will show

Under the equations (20), Theorem 1 is proved as follows: The left-hand side of (7) is equal to

C(l, h) =

(=1 n-2
(n—D!&—l

n-1)I\1-1
0 ifh>2

) ifh=0,

(-1t (n - 2) —

n—1 .
—(=1y"(n -2 i =1y (n =2 B
=i (l - 1)M(l) T 1)!(1 - 1)M(z ~a)
R
= (:l _)l)' (7_ 12)(171—1 _ (l _ a)n—l)
1=1 :
n2 -1 n+l _
i <(n —)1>' (n ! 2)“” —1)al"? + O("™)
1=0 :
=a.
Suppose h = 0; we see that
1 " S
C(,0) =— ( 1)k+nk( ) ( )( )
O;" k OsZa;sz q\n—4q
2 Zerf)Le
0<k<n o<gel
:_'1 Z (_1)k+n k(’;)
0<k<l
_(n 11)' Z (_1)k+n(1l;l i)
0<k<l
~(n 11)v Z ( 1)k+n+1(n : 1)
" 0<k<I-1
_ (_1)n+l+1 n—2
T m-nrii-1)
which is (20).
Second we see that
n—k
ClL1 = - q)'

a Lo D
1<g<l

" O<ks<n

(20)

Unless g — 1 < kand n — g < n — k, binomial coefficients vanish, hence we may assume thatg = korg=k+1,

and we see

qLD:%%Ezoqfwmkc)Elw%k+m—kmwﬂ)

0<k<n

-1 ny -1
:W Z (_1)1+k+n k2 (k) + F

1<g<l

0<k<l T 0<ks<I-1
_ (=" vkl L (T
‘m—n%£;f1)4g+nﬁl)l(J
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_(=D)"n n-1 1 nofh
“1 L (_1)k(k—1)+ﬁ(_1)l lz(l)

" 0<k<l-1

_ED M afn=2) 1 Lenp2 (T
ECE (1—2)+ A

() n-2
Tm=-D\1-1)

Finally, assume that # > 2; hence 1 < <n—1,2 <h < n are supposed. By (19), we have

— n!C{, h)

L orbizen

h<q<max(l,h-1) 0<k<n

+n| T n—nh + h
Ty P g e

h<q<max(l,h-1) 0<K<q
=0,

since

Y 0=y = o Y - sofy) =0

0<K=q 0<K<h

by h > 2. Thus we have completed the proof.
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