Time Varying Parameter Estimation Scheme for a Linear Stochastic Differential Equation
- Olusegun Otunuga
Abstract
In this work, an attempt is made to estimate time varying parameters in a linear stochastic differential equation. By defining $m_{k}$ as the local admissible sample/data observation size at time $t_{k}$, parameters and state at time $t_{k}$ are estimated using past data on interval $[t_{k-m_{k}+1}, t_{k}]$. We show that the parameter estimates at each time $t_{k}$ converge in probability to the true value of the parameters being estimated. A numerical simulation is presented by applying the local lagged adapted generalized method of moments (LLGMM) method to the stochastic differential models governing prices of energy commodities and stock price processes.
- Full Text: PDF
- DOI:10.5539/ijsp.v6n5p84
This work is licensed under a Creative Commons Attribution 4.0 License.
Index
- ACNP
- Aerospace Database
- BASE (Bielefeld Academic Search Engine)
- CNKI Scholar
- COPAC
- DTU Library
- Elektronische Zeitschriftenbibliothek (EZB)
- EuroPub Database
- Excellence in Research for Australia (ERA)
- Google Scholar
- Harvard Library
- Infotrieve
- JournalTOCs
- LOCKSS
- MIAR
- Mir@bel
- PKP Open Archives Harvester
- Publons
- ResearchGate
- SHERPA/RoMEO
- Standard Periodical Directory
- Technische Informationsbibliothek (TIB)
- UCR Library
- WorldCat
Contact
- Wendy SmithEditorial Assistant
- ijsp@ccsenet.org