Time Varying Parameter Estimation Scheme for a Linear Stochastic Differential Equation


  •  Olusegun Otunuga    

Abstract

In this work, an attempt is made to estimate time varying parameters in a linear stochastic differential equation. By defining $m_{k}$ as the local admissible sample/data observation size at time $t_{k}$, parameters and state at time $t_{k}$ are estimated using past data on interval $[t_{k-m_{k}+1}, t_{k}]$. We show that the parameter estimates at each time $t_{k}$ converge in probability to the true value of the parameters being estimated. A numerical simulation is presented by applying the local lagged adapted generalized method of moments (LLGMM) method to the stochastic differential models governing prices of energy commodities and stock price processes.


This work is licensed under a Creative Commons Attribution 4.0 License.