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Abstract

In this work, an attempt is made to estimate time varying parameters in a linear stochastic differential equation. By defining
mk as the local admissible sample/data observation size at time tk, parameters and state at time tk are estimated using past
data on interval [tk−mk+1, tk]. We show that the parameter estimates at each time tk converge in probability to the true value
of the parameters being estimated. A numerical simulation is presented by applying the local lagged adapted generalized
method of moments (LLGMM) method to the stochastic differential models governing prices of energy commodities and
stock price processes.
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1. Introduction

In this work, we estimate the time varying parameters in a linear stochastic differential equation (SDE) in a systemic
and unified way. We studied two special linear stochastic differential equations, namely the geometric brownian motion
and the Ornstein-Uhlenbeck time varying stochastic differential equation. By drawing/recording real world time varying
data at discrete-time on a time interval [t0,T ], a stochastic numerical approximation scheme (Kloeden & Platen, 1992)
is constructed to study the data. The future states of a continuous time dynamic process is assumed to be influenced by
the history of past state. We also assume that response/reaction time delay process influence the present states (Ladde,
1979; Otunuga & Ladde, 2017). Utilizing Monte-Carlo method and the Euler-type (Kloeden & Platen, 1992) stochastic
discretization scheme, we construct systems of local moments/observation equations based on the number of parameters
present. In addition, using the method of moments (Casella & Berger, 2002) in the context of lagged adaptive expectation
process (Paothong & Ladde, 2013), we describe theoretical parametric estimation procedure for the SDE.

The paper is organized as follows.

In Section 2, we describe the general form of linear stochastic differential equation used and give its closed form solution.
In Section 3, we describe the theoretical parametric estimation procedure for a geometric stochastic differential equation
with time varying parameters. We later show that the estimated parameters converge in probability to the true value of the
parameter being estimated. In Section 4, we describe the theoretical parametric estimation procedure for a linear mean
reverting stochastic differential equation with time varying parameters and also show the convergence in probability of
the estimated parameters. In Section 5, numerical simulation is presented by applying the LLGMM method (Otunuga &
Ladde, 2017) to stochastic model governing the stock prices for APPLE Inc., International Businesses Machines (IBM),
JPMorgan Chase and Co. for the same period 01/03/2000 − 01/27/2017, (Apple; JPMorgan; IBM) and the energy
commodities: Henry Hub natural gas price (dollars/million Btu), crude oil price (dollars/barrel), coal price for the period
01/04/2000−01/09/2017, 01/04/2000−01/09/2017 and 01/03/2000−01/11/2016, respectively, (Coal; Crude; Natural
gas). We give a summary of the paper in Section 6.

2. Model Derivation

In this section, we describe the general linear SDE with constant and time-varying parameters. We consider the general
linear SDE with time varying parameters of the form:

dx = ( f (t)x + p(t)) dt + (σ(t)x + q(t)) dW(t), x(t0) = x0, (2.1)

where x is a state variable; f , p,σ, q are continuous functions defined on a given interval [t0,T ], and W(t) is a standard
Wiener process defined on a filtered probability space (Ω,F , (Ft)t≥0,P); the filtration (Ft)t≥0 is right-continuous. We will
assume for the rest of this work that the solution process x(t) is adapted and non-anticiating with respect to (Ft)t≥0.

Under these conditions, the closed form solution (interested readers are advised to see Ladde et.al (Ladde & Ladde, 2013)
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for details on solution of stochastic differential equations) of (2.1) is given by

x(t) = Φ(t)
(
x0 +

∫ t

t0
Φ−1(s)

[
p(s) − σ(s)q(s)

]
ds +

∫ t

t0
Φ−1(s)q(s) dW(s)

)
, (2.2)

where Φ(t) = exp
[∫ t

t0

(
f (s) − 1

2
σ2(s)

)
ds +

∫ t

t0
σ(s) dW(s)

]
.

The general linear stochastic differential equation with constant parameters equivalent to (2.1) is described by:

dx = (µx + γ) dt + (σx + β) dW(t), x(t0) = x0, (2.3)

where µ, γ, σ and β ∈ R. The general solution of (2.3) is given by

x(t) = Φ(t)
(
x0 +

[
γ − σβ] ∫ t

t0
Φ−1(s) ds + β

∫ t

t0
Φ−1(s) dW(s)

)
, (2.4)

where Φ(t) = exp
[(
µ − 1

2
σ2

)
(t − t0) + σ (W(t) −W(t0))

]
.

We study two special cases of (2.1). For the first case, we set f (t) = a(t), p(t) = 0 and q(t) = 0. For the second case,
we set f (t) = −α(t), p(t) = α(t)µ(t), σ(t) = 0 and q(t) = σ(t). We note here that the first case is the generalization
of the geometric stochastic differential equation with time varying parameters. The second case is the generalization of
the Ornstein-Uhlenbeck stochastic differential equation with time varying parameters. From (2.2), it follows that x is
normally distributed if σ(t) = 0 and lognormally distributed if p(t) = q(t) = 0.

3. Theoretical Parametric Estimation Procedure: Case 1

In this section, we study the case of (2.1) of the form

dx = a(t)x dt + σ(t)x dW(t), x(t0) = x0, (3.1)

where the parameters a(t) and σ(t) are unknown for each time t, and are not assumed constant over t. We further assume
that for a fixed time T , the functions a : [t0,T ] → R and σ : [t0,T ] → R+ are continuous and bounded, R+ is the set of
positive real numbers. As noted earlier, (3.1) is the generalization of the geometric stochastic differential equation with
time varying parameters. It’s equivalent version with constant parameters is given by

dx = ax dt + σxdW(t), x(t0) = x0, (3.2)

where α ∈ R and σ > 0.

For any given time T ∈ (t0, T ], let t0 < t1 < ... < tn = T be a non-random partition P of the interval [t0,T ] such that
ti = t0 + i∆t, i = 0, 1, ..., n, and ∆t = T−t0

n .

By the classical existence theorem, the solutions x(t) and x(t) (see (2.2) and (2.4) for the solutions) satisfying (3.1) and
(3.2), respectively, exist and are continuous.

3.1 LLGMM Parameter Estimation Procedure for (3.1)

In the following, we outline the procedure for estimating the time varying parameters a(t) and σ(t) in (3.1).

3.1.1 Transformation of Stochastic Differential Equations

Due to the fact that the drift coefficient of (3.1) has only one parameter a(t), we consider the process V(t, x) = ln x. The
Ito-Doob stochastic differential for V satisfy

d(ln x) =
(
a(t) − σ2(t)

2

)
dt + σ(t) dW(t), ln x(t0) = ln x0. (3.3)

The solution of (3.3) in the interval [tn−1, tn] = [T − ∆t,T ] satisfies

ln
[

x(tn)
x(tn−1)

]
=

∫ tn
tn−1

(
a(s) − σ2(s)

2

)
ds +

∫ tn
tn−1
σ(s) dW(s). (3.4)

3.1.2 Generalized Moment Equations

Define Ftn−1 ≡ Fn−1 as the filtration process up to time tn−1. Applying conditional expectations to ln
(

x(tn)
x(tn−1)

)
in (3.4) with

respect to Fn−1, we obtain

E
[
ln

(
x(tn)

x(tn−1)

)
|Fn−1

]
=

∫ tn
tn−1

(
a(s) − σ2(s)

2

)
ds,

E
[(

ln
(

x(tn)
x(tn−1)

)
− E

[
ln

(
x(tn)

x(tn−1)

)
|Fn−1

])2 |Fn−1

]
=

∫ tn
tn−1
σ2(s) ds.

(3.5)
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3.1.3 Basis for Lagged Adaptive Discrete-time Expectation Process

From (3.5), (3.4) reduces to

ln
(

x(tn)
x(tn−1)

)
= E

[
ln

(
x(tn)

x(tn−1)

)
|Fn−1

]
+

∫ tn

tn−1

σ(s) dW(s). (3.6)

Equation (3.6) provides the basis for the development of lagged adaptive expectation process (Otunuga & Ladde, 2017;
Paothong & Ladde, 2013) with respect to the stochastic dynamic systems (3.3).

3.1.4 Parameter Estimates at Time tn = T

Using the fact that lim
∆t→0

1
∆t

∫ tn
tn−1

(
a(s) − σ2(s)

2

)
ds = a(T ) − σ2(T )

2 and lim
∆t→0

1
∆t

∫ tn
tn−1
σ2(s) ds = σ2(T ), we have

a(tn) = a(T ) = lim
∆t→0

(
1
∆t

[
E

(
ln

[
x(tn)

x(tn−1)

]
|Fn−1

)
+ 1

2E
([

ln
[

x(tn)
x(tn−1)

]
− E

(
ln

[
x(tn)

x(tn−1)

]
|Fn−1

)]2 |Fn−1

)])
,

σ2(tn) = σ2(T ) = lim
∆t→0

1
∆tE

([
ln

[
x(tn)

x(tn−1)

]
− E

(
ln

[
x(tn)

x(tn−1)

]
|Fn−1

)]2 |Fn−1

)
.

(3.7)

To get a discretize estimate for a(tn) and σ2(tn) in (3.7), we use Monte-Carlo method and Euler scheme to discretize (3.3)
on the interval [t0,T ] as follows:

ln
[

xi, j

xi−1, j

]
=

(
a(ti−1) − σ2(ti−1)

2

)
∆t + σ(ti−1) ∆Wi, j, i = 1, 2, ..., n, j = 1, 2, ...,N, (3.8)

where
(
xi, j

)
j∈N

denotes sequence of independent copies of xi ≡ x(ti) at time ti, i = 1, 2, ..., n, ∆Wi, j ∼ N(0,∆t). Let ân,N

and σ̂2
n,N be the estimates of a(T ) and σ2(T ), respectively, at time tn = T . We derive ân,N and σ̂2

n,N from (3.7) as follows:


ân,N = 1

N∆t

 N∑
j=1

ln
(

xn, j

xn−1, j

)
+ 1

2

N∑
j=1

(
ln

(
xn, j

xn−1, j

)
− 1

N

N∑
j=1

ln
(

xn, j

xn−1, j

))2 ,
σ̂2

n,N = 1
N∆t

N∑
j=1

(
ln

(
xn, j

xn−1, j

)
− 1

N

N∑
j=1

ln
(

xn, j

xn−1, j

))2

.

(3.9)

3.2 Consistency

We shall show that ân,N
p
→ a(T ) and σ̂2

N
p
→ σ2(T ) as n→ ∞, N → ∞.

Lemma 1. The random variable 1
N∆t

N∑
j=1
∆Wn, j

p
→ 0, and 1

N∆t

N∑
j=1
∆W2

n, j

p
→ 1 as n→ ∞, N → ∞.

Proof. For any ϵ > 0,

P


∣∣∣∣∣∣∣∣ 1
N∆t

N∑
j=1

∆Wn, j

∣∣∣∣∣∣∣∣ ≥ ϵ
 <

1
N2∆t2ϵ2

E


 N∑

j=1

∆Wn, j


2 = 1

N∆tϵ2
→ 0 as N → ∞,

P


∣∣∣∣∣∣∣∣ 1
N∆t

N∑
j=1

∆W2
n, j − 1

∣∣∣∣∣∣∣∣ ≥ ϵ
 <

1
ϵ2
E


 1

N∆t

N∑
j=1

∆W2
n, j − 1


2 = 2

Nϵ2
→ 0 as N → ∞,

where N∆t → ∞ as N → ∞. �

Theorem 2. Assume that a(t) and σ(t) are continuous and bounded functions. Then ân,N
p
→ a(T ) and σ̂2

n,N
p
→ σ2(T ) as

N → ∞.

Proof. From (3.8), (3.9) and Lemma 1, it follows directly that

 ân,N
p
→ a(T ) − σ2(T )

2 +
σ2(T )

2 = a(T ),
σ̂2

n,N
p
→ σ2(T ),

(3.10)

as n→ ∞, N → ∞. �
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3.3 LLGMM Parameter Estimation Scheme

Define x̄i =
1
N

N∑
j=1

xi, j, i = 1, 2, ..., n and Ib
a = {i ∈ Z++ : a ≤ i ≤ b}, where Z++ is the set of non negative integers. Consider

a continuous time stochastic dynamic process defined on the interval [−τ,T ] into R++, where τ characterizes the influence
of past history of the state of the dynamics. We define the discrete version of time delay τ as r =

[∣∣∣ τ
∆t

∣∣∣] and also define mn

as the local admissible sample/data observation size at time tn. We note here that mn ∈ In
2 . For each sample observation

size mn ∈ In
2 , a partition Pn of closed interval [tn−mn+1, tn] of length mn is called local at time tn and defined by

Pn := tn−mn+1 < tn−mn+2 < ... < tn. (3.11)

Using (3.5 − 3.7), we formulate a local observation process at time tn as an algebraic functions of mn- local functions by
restricting the overall finite sample sequence {xi}ni=−r to a subpartition Pn in (3.11).

Using the LLGMM method by Otunuga et.al (Otunuga & Ladde, 2017), let ân,mn and σ̂2
n,mn

be the moving estimates of
a(tn) and σ2(tn), respectively, at time tn using observation size mn. We derive ân,mn and σ̂2

n,mn
from (3.7) as follows:


ân,mn = 1

mn∆t

 n∑
i=n−mn+1

ln
(

x̄i
x̄i−1

)
+ 1

2

n∑
i=n−mn+1

(
ln

(
x̄i

x̄i−1

)
− 1

mn

n∑
i=n−mn+1

ln
(

x̄i
x̄i−1

))2 ,
σ̂2

n,mn
= 1

mn∆t

n∑
i=n−mn+1

(
ln

(
x̄i

x̄i−1

)
− 1

mn

n∑
i=n−mn+1

ln
(

x̄i
x̄i−1

))2

.

(3.12)

Remark 1. We note here that at each time t = tk, the local admissible observation size mk is not constant. For a given
ϵ > 0, the value of mk that gives the least simulated error at each time tk is recorded as the ϵ-best sub-optimal sample size
m̂k and the parameters âk,mk and σ̂k,mk recorded as ak,m̂k and σ2

k,m̂k
, respectively. The method of estimating m̂k is discussed

in Section 5.

Remark 2. For random variables x1, x2, ..., xn, we compare the maximum likelihood estimates (MLE) ân and σ̂n of the
parameters a and σ in model with constant parameters (3.2) with the parameter estimates ân,N and σ̂n,N in (3.9). The
MLE estimates âN and σ̂N are given by

ân = 1
n∆t

 n∑
i=1

ln
(

xi
xi−1

)
+ 1

2

n∑
i=1

(
ln

(
xi

xi−1

)
− 1

n

n∑
i=1

ln
(

xi
xi−1

))2 ,
σ̂2

n = 1
n∆t

n∑
i=1

(
ln

(
xi

xi−1

)
− 1

n

n∑
i=1

ln
(

xi
xi−1

))2

.

(3.13)

We note here that the estimates in (3.12) and (3.13) are similar when mn = n. Also, the difference in (3.9) and (3.13) is
that (3.13) contains summation over functions of the random variables x1, x2, ..., xn while (3.9) contains summation over
sequence of copies xn,1, xn,2, ..., xn,N of xn.

4. Theoretical Parametric Estimation Procedure: Case 2

In this section, we study the case of (2.1) of the form

dx = α(t) (µ(t) − x) dt + σ(t)dW(t), x(t0) = x0, (4.1)

where the parameters α(t), µ(t), and σ(t) are unknown for each time t, and are not assumed constant over t. We further
assume that for a fixed time T , the functions α : [t0,T ]→ R+, µ : [t0,T ]→ R++ and σ : [t0,T ]→ R+ are continuous and
bounded.

We note here that (4.1) is the generalization of the Ornstein-Uhlenbeck stochastic differential equation with time varying
parameters. It’s equivalent version with constant parameters is

dx = α (µ − x) dt + σdW(t), x(t0) = x0, (4.2)

where µ ≥ 0, α > 0, and σ > 0.

The solution x(t) satisfying (4.1) is given by

x(t) = x0e−
∫ t

t0
α(s) ds

+

∫ t

t0
e−

∫ t
s α(u) duα(s)µ(s) ds +

∫ t

t0
e−

∫ t
s α(u) duσ(s) dWs. (4.3)

It follows that E [x(t)] = E [x0] e−
∫ t

t0
α(s) ds

+
∫ t

t0
e−

∫ t
s α(u) duα(s)µ(s) ds.
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4.1 Parameter Estimation Procedure for (4.1)

We outline the procedure for estimating time varying parameters α(t), µ(t) and σ(t) in (4.1) at any given time T ∈ (t0,T ].

4.1.1 Transformation of Stochastic Differential Equations

Due to the fact that the drift coefficient of (4.1) has two parameters α(t) and µ(t), we consider the processes V1(t, x) = x
and V2(t, x) = x2. The Ito-Doob stochastic differential equations for V1 and V2 satisfy{

dx = α(t) (µ(t) − x) dt + σ(t) dW(t), x(t0) = x0,

d(x2) =
(
2α(t) (µ(t) − x) x + σ2(t)

)
dt + 2σ(t)xdW(t), x2(t0) = x2

0.
(4.4)

4.1.2 Euler-type Discretization Scheme for (4.4)

For any given time T ∈ (t0,T ], let t0 < t1 < ... < tn = T be a non-random partition P of the interval [t0,T ] such that
ti = t0+ i∆t, i = 0, 1, ..., n, where ∆t = T−t0

n , and n is the sample size. The solution of (4.4) on the interval [tn−1, tn] satisfies

∆xn =
∫ tn

tn−1
α(t) (µ(t) − x(t)) dt +

∫ tn
tn−1
σ(t) dW(t),

∆
(
x2

n

)
=

∫ tn
tn−1

(
2α(t) (µ(t) − x(t)) x(t) + σ2(t)

)
dt + 2

∫ tn
tn−1
σ(t)x(t) dW(t),

(4.5)

where ∆xn = x(tn)− x(tn−1). Note that ∆
(
x2

n

)
= ∆xn (xn−1 + xn) = 2 (∆xn) xn−1 + (∆xn)2. From (4.5) and Ito-Doob scheme,

it follows that (∆xn)2 =
∫ tn

tn−1
σ2(t) dt. Using this and the fact that ∆

(
x2

n

)
= 2 (∆xn) xn−1 + (∆xn)2, we reduce (4.5) to the

following:  ∆xn =
∫ tn

tn−1
α(t) (µ(t) − x(t)) dt +

∫ tn
tn−1
σ(t) dW(t),

(∆xn) xn−1 =
∫ tn

tn−1
α(t)x(t) (µ(t) − x(t)) dt +

∫ tn
tn−1
σ(t)x(t) dW(t).

(4.6)

4.1.3 Generalized Moment Equations

Applying expectations to (4.6), we obtain
E [∆xn] =

∫ tn
tn−1
α(t) (µ(t) − E [x(t)]) dt,

E [(∆xn) xn−1] =
∫ tn

tn−1
α(t)µ(t)E [x(t)] dt −

∫ tn
tn−1
α(t)E

[
x(t)2

]
dt

E
[
(∆xn − E [∆xn])2

]
=

∫ tn
tn−1
σ2(t) dt.

(4.7)

4.1.4 Parameter Estimates at Time tn = T
By dividing (4.7) by ∆t and taking the limit as ∆t → 0, we have


lim
∆t→0

1
∆tE [∆xn] = α(tn) (µ(tn) − E [x(tn)]) ,

lim
∆t→0

1
∆tE [(∆xn) xn−1] = α(tn)µ(tn)E [x(tn)] − α(tn)E

[
x(tn)2

]
,

lim
∆t→0

1
∆tE

[
(∆xn − E [∆xn])2

]
= σ2(tn).

(4.8)

The solutions α(tn), µ(tn) and σ2(tn) satisfying (4.8) are given by


α(tn) =

lim
∆t→0

( 1
∆t E[∆xn])E[xn]− lim

∆t→0
( 1
∆t E[(∆xn)xn−1])

E[(xn−E[xn])2] ,

µ(tn) = E [x(tn)] + 1
α(tn

) lim
∆t→0

1
∆tE [∆xn] ,

σ2(tn) = lim
∆t→0

1
∆tE

[
(∆xn − E [∆xn])2

]
.

(4.9)

To get a discretize estimate for α(tn), µ(tn) and σ2(tn) in (4.9), we use Monte-Carlo method and Euler scheme to discretize
(4.1) on the interval [t0,T ] as follows:

∆xi, j = αi−1

(
µi−1 − xi−1, j

)
∆t + σi−1∆Wi, j, i = 1, 2, ..., n, j = 1, 2, ...,N, (4.10)

where
(
xi, j

)
j∈N

denotes sequence of independent copies of xi ≡ x(ti) at time ti, i = 1, 2, ..., n, αi = α(ti), µi = µ(ti) and
σi = σ(ti).
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Let α̂n,N , µ̂n,N and σ̂2
n,N be the estimates of α(T ), µ(T ) and σ2(T ), respectively, at time tn = T . We derive α̂n,N , µ̂n,N and

σ̂2
n,N from (4.9) as follows:



α̂n,N =

1
N

N∑
j=1
∆xn, j

N∑
j=1

xn−1, j−
N∑

j=1
(∆xn, j)xn−1, j N∑

j=1
x2

n−1, j−
1
N

(
N∑

j=1
xn−1, j

)2∆t
,

µ̂n,N = 1
N

N∑
j=1

xn−1, j +

1
N

N∑
j=1
∆xn, j

α̂n,N∆t ,

σ̂2
n,N = 1

∆t ·
1
N

N∑
j=1

(
∆xn, j − 1

N

N∑
j=1
∆xn, j

)2

,

(4.11)

where ∆xn, j = xn, j − xn−1, j.

Remark 3. The solution xn, j, j = 1, 2, ...,N, satisfying (4.10) is given by

xn, j =
n−1∏
k=0

(1 − αk∆t) x0 +
n−2∑
i=0

(
n−1∏

k=i+1
(1 − αk∆t)

)
αiµi∆t + αn−1µn−1∆t

+
n−2∑
i=0

(
n−1∏

k=i+1
(1 − αk∆t)

)
σi∆Wi+1, j + σn−1∆Wn, j.

(4.12)

By writing
n−1∏
k=0

(1 − αk∆t) = exp
(
−

n−1∑
k=0

∞∑
m=1

(αk∆t)m

m

)
= exp

(
−

n−1∑
k=0
αk∆t

)
exp

(
−

n−1∑
k=0

∞∑
m=2

(αk∆t)m

m

)
, it follows that as n → ∞,

n−1∏
k=0

(1 − αk∆t)→ e−
∫ T

t0
α(s) ds and xn, j → xT , j, where

xT , j = e−
∫ T

t0
α(s) dsx0 +

∫ T

t0
e−

∫ T
s α(u) duα(s)µ(s) ds +

∫ T

t0
e−

∫ T
s α(u) duσ(s) dWs, j. (4.13)

4.2 Consistency

Lemma 3. Assume that E [x0] < ∞. Define A1,T = e−
∫ T

t0
α(s) ds

E(x0); A2,T =
∫ T

t0
e−

∫ T
s α(u) duα(s)µ(s) ds and VT =∫ T

t0
e−2

∫ T
s α(u) duσ2(s) ds. Then

1. 1
N

N∑
j=1

xn, j
p
→ A1,T + A2,T = E [x(T )],

2. 1
N

N∑
j=1

x2
n, j

p
→ (

A1,T + A2,T
)2
+ VT = E

[
x2(T )

]
,

3. 1
N∆t

N∑
j=1
∆xn, j

p
→ α(T ) (µ(T ) − E [x(T )]),

4. 1
N∆t

N∑
j=1
∆xn, jxn−1, j

p
→ α(T )

(
µ(T )E [x(T )] − E

[
x2(T )

])
, as n→ ∞ and N → ∞.

Proof. It follows directly from (4.13) that lim
n→∞
E

[
1
N

N∑
j=1

xn−1, j

]
= E [x(T )] and lim

n→∞
E

[
1

N∆t

N∑
j=1
∆(xn, j)

]
= α(T ) (µ(T ) − E [x(T )]).
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Define Un, j =
n−2∑
i=0

(
n−1∏

k=i+1
(1 − αk∆t)

)
σi∆Wi+1, j + σn−1∆Wn, j, j = 1, 2, ...,N. For ϵ > 0,

P


∣∣∣∣∣∣∣∣ 1
N

N∑
j=1

xn, j − E [x(T )]

∣∣∣∣∣∣∣∣ ≥ ϵ
 <

1
ϵ2

[
2E

(
B1,n − A1,T

)2
+ 2E

(
B2,n − A2,T

)2
+ E

(
Z2

1,N

)]
,

P


∣∣∣∣∣∣∣∣ 1
N∆t

N∑
j=1

∆xn, j − α(T ) (µ(T ) − E [x(T )])

∣∣∣∣∣∣∣∣ ≥ ϵ
 <

1
ϵ2

[
E

(
C1,n +C2,n − α(T ) (µ(T ) − E [x(T )])

)2
+ E

(
Z2

2,N

)]
,

P


∣∣∣∣∣∣∣∣ 1
N

N∑
j=1

U2
n, j − VT

∣∣∣∣∣∣∣∣ ≥ ϵ
 <

1
ϵ2
E

 1
N

N∑
j=1

n−2∑
i=0

n−1∏
k=i+1

(1 − αk∆t)σi∆Wi+1, j


2

− VT

+
2
N

N∑
j=1

σn−1

n−2∑
i=0

n−1∏
k=i+1

(1 − αk∆t)σi∆Wi+1, j∆Wn, j

+
1
N

N∑
j=1

σ2
n−1∆W2

n, j


2

,

where

B1,n =

n−1∏
k=0

(1 − αk∆t) x0; B2,n =

n−2∑
i=0

 n−1∏
k=i+1

(1 − αk∆t)

αiµi∆t + αn−1µn−1∆t;

C1,n = −αn−1

n−2∏
k=0

(1 − αk∆t) x0; C2,n = −αn−1

n−3∑
i=0

 n−2∏
k=i+1

(1 − αk∆t)

αiµi∆t − αn−1αn−2µn−1∆t + αn−1µn−1;

D1,n =

n−2∑
i=0

 n−1∏
k=i+1

(1 − αk∆t)2

σ2
i ∆t; Z1,N =

1
N

N∑
j=1

Un, j; Z2,N = −
1
N

N∑
j=1

[
Un−1, jαn−1 − σn−1∆Wn, j/∆t

]
.

It follows that B1,n
p
→ A1,T , B2,n

p
→ A2,T and D1,n

p
→ VT as n→ ∞. Also,

C1,n + C2,n
p
→ α(T )µ(T ) − α(T )

[
e−

∫ T
t0
α(s) dsx0 +

∫ T
t0

e−
∫ T

s αu duα(s)µ(s) ds
]
= α(T )µ(T ) − α(T )E [x(T )] as n → ∞.

Furthermore, E
[
Z2

1,N

]
= 1

N2

N∑
j=1

n−2∑
i=0

(
n−1∏

k=i+1
(1 − αk∆t)2

)
σ2

i ∆t + σ
2
n−1
N and E

[
Z2

2,N

]
= 1

N2

N∑
j=1

n−3∑
i=0

(
n−2∏

k=i+1
(1 − αk∆t)2

)
σ2

i α
2
n−1∆t +

α2
n−1σ

2
n−2
∆t
N +σ

2
n−1/(N∆t) both tend to zero as n→ ∞, N → ∞ and N∆t → ∞. Hence, P

[∣∣∣∣∣∣ 1
N

N∑
j=1

xn, j − E [x(T )]

∣∣∣∣∣∣ ≥ ϵ
]
→ 0,

P

[∣∣∣∣∣∣ 1
N∆t

N∑
j=1
∆xn, j − α(T ) (µ(T ) − E [x(T )])

∣∣∣∣∣∣ ≥ ϵ
]
→ 0 and

P


∣∣∣∣∣∣∣∣ 1
N

N∑
j=1

U2
n, j − VT

∣∣∣∣∣∣∣∣ ≥ ϵ
 <

1
ϵ2N2

[
D1,n

(
3N∆t + (N2 − N)D1,n∆t − 2VT + 2∆t + 4σ2

n−1∆t/N
)
+ V2

T − 2σ2
n−1VT∆t

+

(
1 +

2
N

)
σ2

n−1∆t2
]

tends to zero as n→ ∞, N → ∞. Finally,

1
N

N∑
j=1

x2
n, j =

(
B1,n + B2,n

)2
+

2
N

N∑
j=1

(
B1,n + B2,n

)
Un, j +

1
N

N∑
j=1

U2
n, j

p
→ (

A1,T + A2,T
)2
+ VT ,

as n→ ∞, N → ∞ and
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1
N∆t

N∑
j=1

∆xn, jxn−1, j = αn−1

µn−1

N

N∑
j=1

xn−1, j −
1
N

N∑
j=1

x2
n−1, j

 + σn−1

N∆t

N∑
j=1

∆Wn, jxn−1, j

p
→ α(T )

(
µ(T )E [x(T )] − E

[
x2(T )

])
,

as n→ ∞, N → ∞.

�

Theorem 4. Assume that E [x0] < ∞. Then α̂n,N
p
→ α(T ), µ̂n,N

p
→ µ(T ), and σ̂n,N

p
→ σ(T ) as n→ ∞, N → ∞.

Proof. From (4.10),

1
N∆t

N∑
j=1

∆x2
n, j = α2

n−1∆t

µ2
n−1 −

2µn−1

N

N∑
j=1

xn−1, j +
1
N

N∑
j=1

x2
n−1, j

 + 2αn−1µn−1σn−1

N

N∑
j=1

∆Wn, j

−2αn−1σn−1

N

N∑
j=1

xn−1, j∆Wn, j +
σ2

n−1

N∆t

N∑
j=1

∆W2
n, j

p
→ σ2(T ),

as n→ ∞, N → ∞. It follows from (4.11) that
α̂n,N

p
→ α(T )(µ(T )−E[x(T )])E[x(T )]−α(T )(µ(T )E[x(T )]−E[x2(T )])

VT
= α(T ),

µ̂n,N
p
→ E [x(T )] + α(T )(µ(T )−E[x(T )])

α(T ) = µ(T ),

σ̂2
n,N

p
→ σ2(T ),

as n→ ∞, N → ∞. �

4.2.1 LLGMM Parameter Estimation Scheme

Define x̄i =
1
N

N∑
j=1

xi, j, i = 1, 2, ..., n. For each sample observation size mn ∈ In
2 , a partition Pn of closed interval [tn−mn+1, tn]

of length mn is called local at time tn and defined by (3.11). Using (4.9), we formulate a local observation process at
time tn as an algebraic functions of mn- local functions of restriction of the overall finite sample sequence {xi}ni=−r to a
subpartition Pn.

Let α̂n,mn , µ̂n,mn
, and σ̂2

n,mn
be the moving estimates of α(T ), µ(T ), and σ2(T ), respectively, at time tn and obeservation

size mn. We derive α̂n,mn , µ̂n,mn
, and σ̂2

n,mn
as follows:



α̂n,mn =

1
mn

n∑
i=n−mn+1

∆x̄i
n∑

i=n−mn+1
x̄i−1−

n∑
i=n−mn+1

(∆x̄i)x̄i−1 n∑
i=n−mn+1

x̄2
i−1−

1
mn

(
n∑

i=n−mn+1
x̄i−1

)2∆t
,

µ̂n,mn
= 1

mn

n∑
i=n−mn+1

x̄i−1 +

1
mn

n∑
i=n−mn+1

∆x̄i

α̂n,mn∆t ,

σ̂2
n,mn

= 1
∆t ·

1
mn

n∑
i=n−mn+1

(
∆x̄i − 1

mn

n∑
i=n−mn+1

∆x̄i

)2

.

(4.14)

Remark 4. As discussed in Remark 1, the local admissible observation size mk is not constant at each time tk. For a given
ϵ > 0, the value of mk that gives the least simulated error at each time tk is recorded as the ϵ-best sub-optimal sample size
m̂k and the parameters α̂k,mk , µ̂k,mk

and σ̂2
k,mk

recorded as αk,m̂k , µk,m̂k
and σ2

k,m̂k
, respectively.

Remark 5. We present the maximum likelihood estimate of the parameters α, µ and σ in (4.2) as follows:

For random variables x1, x2, ..., xn satisfying (4.2) such that xi = x(ti), we have

xi = µ + (x0 − µ) e−i α∆t + ξi, i = 1, 2, 3, ..., n, (4.15)

where ξi = σ
∫ ti

t0
e−α(ti−s)dW(s), i = 1, 2, .., n, are identically normally distributed with mean 0 and variance σ

2

2α

(
1 − e−2α∆t

)
.

The joint density function of the random vector x = [x1, x2, ..., xn]
′

is given by
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fx (x1, x2, ..., xn) = (2π)−
1
2 n |Σ|− 1

2 e−
1
2 (x−m)

′
Σ−1(x−m), (4.16)

where mi = µ + (x0 − µ)e−i α∆t, Σi, j = Σ j,i and Σi, j =
σ2

2α

(
e−(i− j) α∆t − e−(i+ j) α∆t

)
, 1 ≤ j ≤ i ≤ n. Σ is positive definite with

determinant |Σ| =
(
σ2

2α

)n (
1 − e−2 α∆t

)n
and inverse defined by

Σ−1
i, j =


2α
σ2

e2α∆t

e2α∆t−1 , if i = j = n,
2α
σ2

e2α∆t+1
e2α∆t−1 , if i = j , n,

2α
σ2

eα∆t

1−e2α∆t , if |i − j| = 1,
0, if |i − j| ≥ 2.

It can be shown that (x −m)
′
Σ−1 (x −m) =

n∑
i=1

(xi−µ−(xi−1−µ)e−α∆t))2

σ2
2α [1−e−2α∆t]

. The log-likelihood function Ln(α, µ, σ : x1, ..., xn) is

Ln(α, µ, σ : x) = −n
2

[
log

(
σ2

2α

)
+ log(1 − e−2α∆t) + log(2π)

]
− α
σ2

n∑
i=1

(
xi − µ − (xi−1 − µ)e−α∆t)

)2[
1 − e−2α∆t] . (4.17)

Estimating the maximum likelihood estimates α̂, µ̂ and σ̂ of α, µ and σ, respectively, reduces to solving the nonlinear
system of equations {

∂Ln(α, µ, σ : x)
∂µ

= 0;
∂Ln(α, µ, σ : x)

∂α
= 0;

∂Ln(α, µ, σ : x)
∂σ

= 0, (4.18)

for µ, α and σ. Let var(x) = 1
n

n∑
i=1

(
xi−1 − 1

n

n∑
j=1

x j−1

)2

, cov(x, y) = 1
n

n∑
i=1

(
xi−1 − 1

n

n∑
j=1

x j−1

) (
xi − 1

n

n∑
j=1

x j

)
, where y =

[x0, ..., xn−1]
′
.The MLE estimates α̂n, µ̂n and σ̂n satisfying (4.18) are given by

α̂n = 1
∆t log

(
var(x)

cov(x,y)

)
,

µ̂n = 1
n

n∑
i=1

xi +
e−α̂∆t

1−e−α̂∆t
1
n

n∑
i=1
∆xi,

σ̂2
n = 2α̂

1−e−2α̂∆t · 1
n

n∑
i=1

(
xi − µ̂ − (xi−1 − µ̂)e−α̂∆t

)2
.

(4.19)

Using the Taylor series expansion of ln(x) around x = 1, we can approximate ln(x) ≈ 1 − 1
x . Also, 1−e−x

e−x ≈ x for
considerably small x. Thus, we can compare (4.19) with (4.14) for large observation size mn = n as follows:

α̂n = 1
∆t log

(
var(x)

cov(x,y)

)
≈

1
n

n∑
i=1
∆xi

n∑
i=+1

xi−1−
n∑

i=1
(∆xi)xi−1 n∑

i=1
x2

i−1−
1
n

(
n∑

i=1
xi−1

)2∆t
,

µ̂n = 1
n

n∑
i=1

xi +
e−α̂∆t

1−e−α̂∆t
1
n

n∑
i=1
∆xi ≈ 1

n

n∑
i=1

xi−1 +

1
n

n∑
i=1
∆xi

α̂n,n∆t ,

σ̂2
n = 2α̂

1−e−2α̂∆t · 1
n

n∑
i=1

(
xi − µ̂ − (xi−1 − µ̂)e−α̂∆t

)2 ≈ 1
n∆t

n∑
i=1

(
∆xi − 1

n

n∑
i=1
∆xi

)2

.

(4.20)

5. Numerical Simulation

In this section, we simulate stock prices and energy commodities’ prices using discretized stochastic differential equations
(3.1) and (4.1), together with their estimated parameters derived in (3.12) and (4.14), respectively.

5.1 Numerical Simulation of Stock Price Using LLGMM Method

Let ys
k,mk

be a simulated value of the real stock price satisfying the Euler- discretized version of (3.1) at time tk. ys
k,mk

cor-
responds to a local admissible lagged-adapted finite sequences of conditional sample/data observation {E [

yi|Fi−1
]k
i=k−mk+1

of size mk at time tk derived from the discretized Euler scheme

ys
k,mk
= ys

k−1,mk−1
+ â,k−1,mk−1 ys

k−1,mk−1
∆t + σ̂k−1,mk−1 ys

k−1,mk−1
∆Wk,mk . (5.1)

We define the quadratic square error of E
[
yk |Fk−1

]
relative to each simulated values ys

k,mk
as

Ξmk ,k,yk =
(
E[yk |Fk−1] − ys

mk ,k

)2
. (5.2)
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For any arbitrary small positive number ϵ and for each time tk, we define the ϵ-sub-optimal admissible subsetMk of set
of mk-size local admissible lagged sample size mk at tk as:

Mk = {mk : Ξmk ,k,yk < ϵ}. (5.3)

We record the value mk ∈ Mk that gives the minimum error as m̂k. The ϵ− best sub-optimal estimates of the parameters
âk,mk and σ̂2

k,mk
at the ϵ-best sub-optimal sample size m̂k are also recorded as ak,m̂k and σ2

k,m̂k
, respectively.

Finally, the simulated value at time tk with m̂k is now recorded as the ϵ-best sub-optimal state estimate ys
k,m̂k

for E[yk |Fk−1]
at time tk

Now, we apply the LLGMM conceptual computational algorithm to simulate real stock price data namely International
Businesses Machines (IBM), JPMorgan Chase and Co and Apple Inc. for the same period 01/03/2000 − 01/27/2017
(Apple; JPMorgan; IBM). For simulation purpose, we pick time delay r = 30, ∆t = 1 and the quadratic square error of
the simulation is chosen to be at most ϵ = 0.001. We note here that r can be chosen as large as the sample size N . We
note that as r approachesN , the quadratic square error reduces significantly. This is demostrated by showing side by side
simulations for r = 30 and r = 50 in Figures 3 and 4, respectively.

The graphs of the ϵ− best sub-optimal estimates ak,m̂k for the three stock prices International Businesses Machines (IBM),
JPMorgan Chase and Co and Apple Inc. are shown in Figure 1 below.

(a) (b)

(c)

Figure 1. The graphs of parameter ak,m̂k with time tk for IBM, JPMorgan CHASE & Co and APPLE Inc stock price

The graphs of the ϵ− best sub-optimal estimates σ2
k,m̂k

for the three stock prices International Businesses Machines (IBM),
JPMorgan Chase and Co and Apple Inc. are shown in Figure 2 below.
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(a) (b)

(c)

Figure 2. The graphs of parameter σ2
k,m̂k

with time tk for IBM, JPMorgan CHASE & Co and APPLE Inc stock price

The graphs of the ϵ− best sub-optimal simulated stock price estimates for the three stock prices International Businesses
Machines (IBM), JPMorgan Chase and Co and Apple Inc. are shown in Figure 3 below.

(a) (b)
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(c)

Figure 3. The graphs of real and simulated stock price for IBM, JPMorgan CHASE & Co and APPLE Inc. r = 30

In order to show the effect of increasing the delay constant r, we also include the simulation result using r = 50. It is
obvious from comparison of Figures 3 and 4 that as r approaches N , the root mean square value approaches zero.

(a)
(b)

(c)

Figure 4. The graphs of real and simulated stock price for IBM, JPMorgan CHASE & Co and APPLE Inc. for r = 50

5.2 Numerical Simulation of energy commodity using LLGMM method

Using discretized Euler scheme for (4.1), we apply the above conceptual computational algorithm for the real time data
sets namely; daily Henry Hub Natural gas (dollars/million Btu) price data for the period 01/04/2000−01/09/2017, crude
oil price (dollars/barrel) data for the period 01/04/2000 − 01/09/2017 and coal price data for the period 01/03/2000 −
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01/11/2016 (Coal; Crude; Natural gas). For simulation purposes, we pick time delay r = 30, ∆t = 1 and the quadratic
square error of the simulation is chosen to be at most ϵ = 0.001. We also note here that r can be chosen as large as the
sample size, N . As r approaches N , the quadratic square error reduces significantly. We demostrated this by showing
side by side simulations for r = 30 and r = 50 in Figures 8 and 9, respectively.

The graphs of the ϵ− best sub-optimal estimates µk,m̂k
for the three energy commodities: natural gas, crude oil and coal

prices are shown in Figure 5 below.

(a) (b)

(c)

Figure 5. The graphs of parameter µk,mk
with time tk for natural gas, crude oil and coal

The graphs of the ϵ− best sub-optimal estimates αk,m̂k for the three energy commodities: natural gas, crude oil and coal
prices are shown in Figure 6 below.
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(a) (b)

(c)

Figure 6. The graphs of parameter αk,m̂k with time tk for natural gas, crude oil and coal

The graphs of the ϵ− best sub-optimal estimates σ2
k,m̂k

for the three energy commodities Natural gas, crude oil and coal
prices are shown in Figure 7 below.

(a) (b)
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(c)

Figure 7. The graphs of parameter σ2
k,m̂k

with time tk for natural gas, crude oil and coal

In the following figures, we show the effect of increasing the delay constant r by showing a simulation result for the cases
where r = 30 and r = 50.

(a) (b)

(c)

Figure 8. The graphs of real and simulated daily prices for natural gas, crude oil and coal for r = 30.
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(a) (b)

(c)

Figure 9. The graphs of real and simulated daily prices for natural gas, crude oil and coal for r = 50.

6. Summary

The purpose of this paper is to describe the LLGMM method of parameter estimations in a linear stochastic differential
equation with time dependent parameters. It is shown that the estimated parameters converge in probability to the true
parameters of the stochastic model. Numerical simulation is carried out in the context of three stock prices and three
energy commodity prices. We also show graphically that as the delay constant r increases, the quadratic square error
tends to zero.
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