Dependence Modeling in Energy Markets using Sibuya-type Copulas


  •  Nikolai Kolev    
  •  Jayme Pinto    

Abstract

The dependence structure between 756 prices for futures on crude oil and natural gas traded on NYMEX is analyzed  using  a combination of novel time-series and copula tools.  We model the log-returns on each commodity individually by Generalized Autoregressive Score models and account for dependence between them by fitting various copulas to corresponding  error terms. Our basic assumption is that the dependence structure may vary over time, but the ratio between the joint distribution of error terms and the product of marginal distributions (e.g., Sibuya's dependence function) remains the same, being time-invariant.  By performing conventional goodness-of-fit tests, we select the best copula, being member of the currently  introduced class of  Sibuya-type copulas.


This work is licensed under a Creative Commons Attribution 4.0 License.