Extreme Value Theory: a New Characterization of the Distribution Function for the Mixed Method
- Kane Ladji
- Diawara Daouda
- Diallo Moumouni
Abstract
Consider the sample X1, X2, ..., XN of N independent and identically distributed (iid) random variables with common cumulative distribution function (cdf)F, and let Fu be their conditional excess distribution function F. We define the ordered sample by . Pickands (1975), Balkema and de Haan (1974) posed that for a large class of underlying distribution functions F , and large u ,Fu is well approximated by the Generalized Pareto Distribution.The mixed method is a method for determining thresholds. This method consists in minimizing the variance of a convex combination of other thresholds.
The objective of the mixed method is to determine by which probability distribution one can approach this conditional distribution. In this article, we propose a theorem which specifies the conditional distribution of excesses when the deterministic threshold tends to the end point.
- Full Text: PDF
- DOI:10.5539/ijsp.v6n1p71
Index
- ACNP
- Aerospace Database
- BASE (Bielefeld Academic Search Engine)
- CNKI Scholar
- COPAC
- DTU Library
- Elektronische Zeitschriftenbibliothek (EZB)
- EuroPub Database
- Excellence in Research for Australia (ERA)
- Google Scholar
- Harvard Library
- Infotrieve
- JournalTOCs
- LOCKSS
- MIAR
- Mir@bel
- PKP Open Archives Harvester
- Publons
- ResearchGate
- SHERPA/RoMEO
- Standard Periodical Directory
- Technische Informationsbibliothek (TIB)
- UCR Library
- WorldCat
Contact
- Wendy SmithEditorial Assistant
- ijsp@ccsenet.org