Linear Hybrid Deterministic Dynamic Modeling for Time-to-Event Processes: State and Parameter Estimations
- E. Appiah
- G. Ladde
Abstract
In this work, we initiate an innovative alternative modeling approach for time-to-event dynamic processes. The proposed approach is composed of the following basic components: (1) development of continuous-time state of dynamic process, (2) introduction of discrete-time dynamic intervention process, (3) formulation of continuous and discrete-time interconnected dynamic system, (4) utilizing Euler-type discretized schemes, and (5) introduction of conceptual and computational state and parameter estimation procedures. The presented approach is motivated by state and parameter estimation of time-to-event processes in biological, chemical, engineering, epidemiological, medical, military, multiple-markets and social dynamic processes under the influence of discrete-time intervention processes. The role and scope of our approach is exhibited by presenting several well-known hazard/risk rate and survival function estimates as special cases. Moreover, conceptual algorithms are illustrated by time-series data sets under the influence of intervention processes.- Full Text: PDF
- DOI:10.5539/ijsp.v5n6p32
This work is licensed under a Creative Commons Attribution 4.0 License.
Index
- ACNP
- Aerospace Database
- BASE (Bielefeld Academic Search Engine)
- CNKI Scholar
- COPAC
- DTU Library
- Elektronische Zeitschriftenbibliothek (EZB)
- EuroPub Database
- Excellence in Research for Australia (ERA)
- Google Scholar
- Harvard Library
- Infotrieve
- JournalTOCs
- LOCKSS
- MIAR
- Mir@bel
- PKP Open Archives Harvester
- Publons
- ResearchGate
- SHERPA/RoMEO
- Standard Periodical Directory
- Technische Informationsbibliothek (TIB)
- UCR Library
- WorldCat
Contact
- Wendy SmithEditorial Assistant
- ijsp@ccsenet.org