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Abstract

In this work, we initiate an innovative alternative modeling approach for time-to-event dynamic processes. The proposed
approach is composed of the following basic components: (1) development of continuous-time state of dynamic process,
(2) introduction of discrete-time dynamic intervention process, (3) formulation of continuous and discrete-time intercon-
nected dynamic system, (4) utilizing Euler-type discretized schemes, and (5) introduction of conceptual and computa-
tional state and parameter estimation procedures. The presented approach is motivated by state and parameter estimation
of time-to-event processes in biological, chemical, engineering, epidemiological, medical, military, multiple-markets and
social dynamic processes under the influence of discrete-time intervention processes. The role and scope of our approach
is exhibited by presenting several well-known hazard/risk rate and survival function estimates as special cases. Moreover,
conceptual algorithms are illustrated by time-series data sets under the influence of intervention processes.

Keywords: Kaplan-Meier estimator, hazard/risk rate function, piecewise exponential estimator, time-to-event closed
process, totally discrete-time hybrid system

1. Introduction

In the survival and reliability data analysis, the main interest is focused on a nonnegative random variable, say T which
describes a time-to-event process characterizing an occurrence of time until a certain event. Historically well-known
time-to-event processes are deaths in population dynamic and component failures in mechanical systems (Kalbfleisch &
Prentice, 2011). The human mobility, electronic communications, technological changes, advancements in engineering,
medical, and social sciences have diversified the role and scope of time-to-event processes in cultural, epidemiological,
financial, military and social sciences (Ladde, 2015; Chandra & Ladde, 2014; Ladde & Ladde, 2012; Wanduku & Ladde,
2011; Anis, 2009).

The study of survival analysis rests on the concept of time-to-event. The mathematical statistics development of time-
to-event analysis is based on the probabilistic approach and the concept of hazard rate. Moreover, the time-to-event is
described by the closed form expressions of survival function that is determined by the concept of hazard rate (Kalbfleisch
& Prentice, 2011; Lawless, 2011; Miller, 2011). We note that in general, hazard rate is unknown. This leads to a problem
of determining hazard rate function. This is based on a feasible approach of collecting data set for the time-to-event
processes in biological, chemical, engineering, epidemiological, medical, multiple-markets and social sciences. The
hazard/risk rate and survival function estimation problems in the survival and reliability analysis are centered around the
idea of “right censored data” (Miller, 2011). In fact, the common conventional understanding for resolving ties between
censored and uncensored observations is adopted by shifting the censored observations slightly to the left of uncensored
observations (Whittemore & Keller, 1983). In short, the items/individuals/objects in a given sample are decomposed
into two mutually exclusive groups, namely, (a) deaths/failure /removal/non-operational/inactive, and (b) censored/losses/
withdrawals.

In the survival and reliability data analysis, parametric and nonparametric methods are applied to estimate the hazard/risk
rate and survival functions (Kalbfleisch & Prentice, 2011; Lawless, 2011). A parametric approach is based on the as-
sumption that the underlying survival distribution belongs to some specific family of distributions (e.g. normal, Weibull,
exponential). On the other hand, a nonparametric approach is centered around the best-fitting member of a class of
survival distribution functions (Kaplan & Meier, 1958). Moreover, Kaplan-Meier(KME) (Kaplan & Meier, 1958) and
Nelson-Aalen (Aalen, 1978; Nelson, 1969) type nonparametric approach do not assume neither distribution class, nor
closed-form distributions. In fact, it just depends on a data. The Kaplan-Meier and Nelson-Aalen type nonparametric
estimation approaches are systematically analyzed by our totally discrete-time hybrid dynamic modeling process.
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In the existing literature (Kalbfleisch & Prentice, 2011; Lawless, 2011), the closed-form expression for a survival function
is based on the usage of probabilistic analysis approach. The closed-form representation of the survival function coupled
with mathematical statistics method (parametric approach) is used to estimate both survival and hazard/risk rate functions.
In fact, the parametric approach/model has advantages of simplicity, the availability of likelihood based inference proce-
dures and the ease of use for a description, comparison, prediction, or decision (Lawless, 2011). In this work, we initiate
an innovative alternative approach for modeling time-to-event dynamic processes. This approach leads to the develop-
ment for estimating survival and hazard/risk rate functions. The presented approach is motivated by a simple observation
regarding the probabilistic definition of the survival function (Kalbfleisch & Prentice, 2002). Moreover, this approach
does not require a knowledge of either a closed-form solution distribution or a class of distributions.

Historically, exponential distributions have been widely used in analyzing survival/reliability data (Lawless, 2011; Davis,
1952). This was partly due to the mathematical simplicity and the availability of simple statistical methods. An application
of the exponential model with covariates to medical survival data was initiated in Feigl and Zelen (1965). The assumption
of a constant hazard/risk rate function is very restrictive. In fact, it is often violated. This is due to the fact that in some
real life applications, sudden changes in the hazard rate at unknown times can be encountered due to a major maintenance
in a mechanical system or a new treatment procedure in medical sciences (Anis, 2009). For example, usually a machine
component functions with a constant hazard/risk rate function λ1, until it suffers a shock. After this shock, the component
may continue to operate but with a different constant hazard/risk rate function λ2. In the medical field, there is usually
a high initial risk after a major operation which settles down to a lower constant long-term risk rate (Anis, 2009). This
type of change could occur in multiple times. In view of this, one is often interested in detecting the locations of such
changes and estimating the sizes of the detected changes. Recently, several authors (Han, Schell & Kim 2014; He &
Su, 2013; Fang & Su, 2011, Goodman, Li, & Tiwari, 2011) have proposed estimators based on change point hazard
models. A Bayesian approach for estimating the piecewise exponential distribution (Gamerman, 1994) and estimating
the grid of time-points (Demarqui, Loschi, & Colosimo, 2008) for the piecewise exponential model are also available in
the literature. In order to incorporate these types of sudden changes (intervention process) in the hazard rate function, we
modify the developed continuous state dynamic model to an interconnected hybrid dynamic model that is composed of
both continuous time state and discrete time state (intervention process) dynamic processes.

Employing the total time on test (TTT) for undefined censored data beyond the last observation, the idea of Piecewise
Exponential Estimator (PEXE) of a survival function was introduced by (Kitchin, Langberg, & Proschan, 1980) and
applied for estimating life distribution from incomplete data. The PEXE has been modified to address the issues regarding
the presence of ties in the data by Whittemore and Keller (1983).

The comparison of the PEXE with the KME (Kim & Proschan, 1991) exhibits the advantage of the PEXE over the
KME. For example, the PEXE is a continuous survival function. Moreover, it exhibits the complete information that is
coming from the censored data. Using a total time test and the PEXE based approach, the estimators of the hazard/risk
rate and cumulative distribution functions on the left closed pairwise consecutive failure time intervals are determined
in Kulasekera and White (1996). The PEXE is further extended by Malla and Mukerjee (2010) with an exponential tail
extension in the framework of the Kaplan and Meier (1958) nonparametric estimator approach. Under the presented
dynamic framework, we develop the PEXE and new PEXE of Malla and Mukerjee (2010) types in a systematic and
unified way. In short, the presented novel approach incorporates all the existing features such as: incomplete data, issues
regarding the ties, exponential tail extensions in the framework of Kaplan and Meier (1958), and so on in a coherent
manner.

The organization of the presented work is as follows. In Section 2, recognizing the classical probabilistic analysis model of
time-to-event as a dynamic process, we initiate a linear hybrid deterministic dynamic model for time-to-event processes.
Moreover, a fundamental mathematical result that provides a basis for interconnected continuous-discrete-time and totally
discrete-time dynamic processes, is developed. Utilizing the dynamic model and the main result developed in Section 2,
basic conceptual analytic algorithms and its special cases for interconnected continuous-discrete-time and totally discrete-
time linear hybrid dynamic models for time-to-event processes are presented in Section 3. In Section 4, we outline
conceptual computational schemes. In Section 5, we present a very general conceptual and computational algorithm
for estimating a hazard/risk rate function for multiple censoring times between consecutive failure times. These general
results include the presented results in Section 4 as special cases. In Section 6, conceptual computational and simulation
algorithms are developed. The developed computational schemes are applied to estimate hazard/risk rate and survival
functions in a systematic and unified way. Moreover, several well-known results are exhibited as special cases. A few
conclusions are drawn in Section 7 to exhibit the role and scope of linear hybrid deterministic modeling for time-to-
event processes. Moreover, further extensions and generalizations to both deterministic and stochastic nonlinear and
non-stationary hybrid modeling for time-to-event processes are currently underway. In addition, currently, a complex
time-to-event dynamic analysis is also undertaken by the authors. These results will appear elsewhere. Finally, proofs of
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theorems and corollaries in Sections 2, 3, 4 and 5 are outlined in supplementary Section 8.

2. Linear Hybrid Dynamic Modeling of Time-to-event Process

In this section, based on the probabilistic definition of the survival function, we develop a model for time-to-event dynamic
processes. From the probabilistic definition of the survival function (Kalbfleisch & Prentice, 2011; Lawless, 2011; Miller,
2011) and differential calculus (Apostol, 1967), we recognize that

λ(t)∆t ≈ S (t) − S (t + ∆t)
S (t)

, (1)

where S and λ are survival and hazard/risk rate functions, respectively. Moreover, from (1) and differential calculus
(Apostol, 1976), we have

dS = −λ(t)S dt , S (t0) = S 0 , t ∈ [t0,∞) , (2)

where dS is a differential of a survival function S . In fact, (2) is a differential equation, and it is an initial value problem
(IVP) (Ladde & Ladde, 2012). Based on continuous-time dynamic modeling (Ladde & Ladde, 2012), (2) represents a
continuous-time linear dynamic model of time-to-event processes. In fact, we consider time-to-event processes to be
probabilistic dynamic processes. The state of the process is represented by survival/infective/operational/radical and its
complementary state, failure/removal/death/non-operational/normal, and it is measured by a probability distribution func-
tion. Employing Newtonian modeling approach, the instantaneous rate of change of survival state is directly proportional
to the magnitude of the survival. The negative sign in (2) signifies that the state of survival is decaying/diminishing/de-
creasing. λ is a positive constant of proportionality. In general, it is a function of time. This is because of the fact that in
general, the time-to-event processes are non-stationary. The solution of (2) on the interval [t0,∞) is given by

S (t) = S 0 exp [−Λ(t)] , (3)

where

Λ(t) =
∫ t

0
λ(u)du , (4)

and it is the cumulative hazard/risk rate function.

Remark 2.1. If λ(t) = λ for t ≥ 0, t0 = 0 , S (0) = 1, then (3) reduces to the following well-known exponential distribution
function:

S (t) = exp[−λt] , t ∈ [0,∞) , (5)

and a complementary state of the survival state of time-to-event process is represented by

F(t) = 1 − S (t) = 1 − exp[−λt] , t ∈ [0,∞) ,

and it is referred as a failure distribution function. Furthermore, we note that survival state dynamic model (2) signifies
that the time-to-event process is closed (Rosen, 1970), that is, S (t)+ F(t) = 1. It is analogous to epidemiological dynamic
modeling process without removal (Ladde & Ladde, 2012; Wanduku & Ladde, 2011).

The presented motivational observation coupled with the introduction of the idea of continuous-time state dynamic process
(2) operating under the discrete-time intervention processes further leads to a development of a linear hybrid dynamic
model (Ladde & Ladde, 2012) for time-to-event processes. It is known (Ladde & Ladde, 2012) that many real world time-
to-event dynamic processes are subject to intervention processes (internal or external). Therefore, it is natural that time-to-
event dynamic processes undergo state adjustment processes. This causes a modification of the presented state dynamic
processes that are described by simple state dynamic model (2). We note that the dynamic state adjustment processes
are caused by periodic changes in science, technology, medicine, culture, socio-economic, environmental conditions and
general behavior.

In the following, we introduce a type of hazard/risk rate function. Moreover, using dynamic approach, we present a
development of PEXE (Kitchin et al., 1980; Kim & Proschan, 1991) in a systematic and unified way.

Definition 2.1. Let τ0 < τ1 < τ2 < . . . < τk < τk+1 be a given partition of a time interval [τ0,T ], with τ0 = 0 and
τk+1 = ∞. Let λ1, λ2, . . . , λk+1 be model parameters. A hazard/risk rate function for a nonnegative random variable T that
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characterizes time-to-event processes, is of the following form:

λ(t) =
k+1∑
i=1

= λ jI[τ j−1,τ j)(t) , t ∈ R+ = [0,∞) , (6)

where λ j are positive real numbers for j ∈ I(1, k + 1), (I(1, l) = {1, 2, . . . , l}); I[τ j−1,τ j) is the characteristic function with
respect to [τ j−1, τ j). Moreover, T is said to have a piecewise constant hazard function.

Definition 2.2.
∏

i|τ j≤t
denotes the symbol for a product of objects for all positive integers i ∈ I(1,∞) that satisfy the

conditions τi ≤ τ j and τ j ≤ t < τ j+1 for some j ∈ I(1, n) and for τi, τ j−1, τ j+1, t ∈ [τ0,T ].

From Definition 2.1, we recognize that the sudden changes in the hazard/risk rate function are encountered due to var-
ious types of intervention processes (internal or external) (Ladde & Ladde, 2012). This causes to interrupt the current
continuous-time state dynamic process (2). Following the linear hybrid dynamic model (Ladde & Ladde, 2012), a modi-
fied version of time-to-event dynamic model (2) is represented by:dS = −λ(t)S dt , S (τ j−1) = S j−1 , t ∈ [τ j−1, τ j) ,

S j = S (τ−j , τ j−1, S j−1) , S (τ0) = S 0 , j ∈ I(1, k + 1) ,
(7)

where S (τ−j ) = S (τ−j |λ, τ j−1, S j−1) describes a very simpler form of intervention process generated at an intervention time
τ j; τ−j stands for t ∈ [τ j−1, τ j), that is less than τ j and very close to τ j. We note that system (7) is interconnected hybrid
dynamic system composed of both continuous and discrete time state dynamic systems. Imitating the procedure described
in Ladde and Ladde (2012), the solution process of the IVP (7) is as follows:

S (t, τ j−1, S j−1|λ) = S j−1 exp
−∫ t

τ j−1

λ(u)du
 , for all t ∈ [τ j−1, τ j) . (8)

Furthermore, the solution process of the overall time-to-event dynamic process (7) on [τ0,T ) is

S (t, τ j−1, S 0|λ) = S 0

j−1∏
m=1

exp
[
−

∫ τm

τm−1

λ(u)du
]

exp
−∫ t

τ j−1

λ(u)du
 , t ∈ [τ0,T ) , j ∈ I(1, k + 1) . (9)

Remark 2.2. From (7) and (8), we note that the solution process (8) is indeed PEXE (Kitchin et al., 1980; Kim &
Proschan, 1991).

In the following, we present a very simple fundamental auxiliary result that would be used, subsequently. Moreover, it
exhibits an analytic unified bridge and basis for (7) and its complete discrete-time version.

Theorem 2.1. Let {τ j}n0 be a partition of [0,T ] and let β be a monotonic nondecreasing function defined by

β(t) =

0, t ∈ [τ j−1, τ j) ,
1, t = τ j ,

(10)

for each j ∈ I(1, n). Let x be a state dynamic process in biological, engineering, epidemiological, human, medical,
military, physical and social sciences under the influence of time-to-event processes. Let x be described by:dx =

[−α(t) x + γ(t)
]
dβ(t), t ∈ [τ j−1, τ j) ,

x j = (1 − α j)x(τ−j , τ j−1, x j−1) + γ j , x(τ0) = x0 ,
(11)

where α and γ are real-valued continuous functions defined on [0,∞); α j = α(τ j) and γ j = γ(τ j). Then

x(t) =
∏

k|τ j≤t

(1 − αk)x0 +

j−1∑
i=1

Φ(t, τi)γi + γ j , for t ≥ τ0 , (12)

where j is the largest integer so that τ j ≤ t < τ j+1, τk ≤ τ j and

Φ(t, τi) =
∏
τi≤τ j≤t

(1 − αi) , Φ(τi, τi) = 1 for i ∈ I(0, n) .
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Proof. The proof of Theorem 2.1 is given in the supplementary Section 8.

Remark 2.3. From (10), the hybrid dynamic system (11), is equivalent to the hybrid dynamic systemdx = 0 dt , x(τ j−1) = x j−1 , t ∈ [τ j−1, τi) ,
x j = (1 − α j)x(τ−j , τ j−1, x j−1) + γ j , x(τ0) = x0 ,

(13)

for j ∈ I(1, n). The solution process of (13) is represented in (12).

In the following, we present a couple of special cases of Theorem 2.1. These special cases illustrate a systematic way for
exhibiting the existing results in Kaplan and Meier (1958), Nelson (1969), Aalen (1978) and Malla and Mukerjee (2010)
in the framework of presented innovative dynamic approach.

Corollary 2.1. If functions α and γ in Theorem 2.1 are replaced by functions λ and γ = 0, then (12) reduces to

x(t) =
∏
j|τ j≤t

(1 − λ j)x0 , t ≥ τ0 . (14)

Corollary 2.2. If α = 0 and x0 = 0 in Theorem 2.1, then the conclusion of Theorem 2.1 reduces to

x(t) =
∑

i|τ j−1≤t

γi , t ≥ τ0 and t ∈ [τ j−1, τ j) . (15)

In the following, we present a definition of cumulative jump process (Malla & Mukerjee, 2010) in the framework of hybrid
dynamic model.

Example 2.1. Let T1,T2, . . . ,Tn be discrete failure times for the discrete-time event process, and 0 = a0 < a1 ≤ a2 ≤
. . . ≤ am be jumps of a survival function in magnitude. Then the dynamic for the cumulative jump process is as described
in Corollary 2.2, and its solution process is exhibited in (15).
In this example, applying Corollary 2.2 in the context of γ0 = 0, γi = ai, the cumulative jump process is represented by

x(t) =


A j−1 =

j−1∑
i=1

ai , for t ∈ [τ j−1, τ j) ,

A j =
j∑

i=1
ai , t = τ j .

(16)

From (16), we recognize that the cumulative jump defined in Malla and Mukerjee (2010) is indeed recast as the discrete
time intervention process described by the hybrid dynamic system illustrated in Corollary 2.2 at the discrete time τ j for
j ∈ I(1,m) with γ0 = a0 = 0 and γi = ai.

Example 2.2. Under the conditions of Example 2.1, the magnitude of the survival function at the failure times is repre-
sented by

S (t) =

1 − A j−1 , for t ∈ [τ j−1, τ j) ,
1 − A j , t = τ j, j ∈ I(1,m) ,

(17)

where γ0 = 1 and x(τ j) = A j. The S (t) in (17) is the magnitude of the survival function determined by the cumulative
jump (Malla & Mukerjee, 2010) process described in Example 2.1.

Remark 2.4. We remark that the continuous-time dynamic model can be exhibited by the cumulative hazard/risk rate
function. In fact, from (2), we have

d ln S = −λ(t)dt , ln S (τ0) = S 0 . (18)

Based on the solution processes of (2) and (7), the solution process of (18) can be represented as:

− ln
[

S (t)
S (τ0)

]
= Λ(t, τ0, S 0|λ) =

∫ t

τ0

λ(u)du . (19)

and

− ln
[

S (t)
S (τ0)

]
= Λ(t, τ0|λ) =

j−1∑
m=1

∫ τm

τm−1

λ(u)du +
∫ t

τ j−1

λ(u)du , t ∈ [τ j−1, τ j) . (20)
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respectively. Furthermore, we set x = ln S , S 0 = 1 and γ(t) = −λ(t) where S and λ are defined in (18). From Corollary
2.2, we have

ln S (t) = −Λ(t) , (21)

where Λ(t) =
∑

i|τi≤t λi is a cumulative hazard function.

Remark 2.5. We remark that if x is replaced by survival function, S in Corollary 2.1, and x and γ are replaced by S and
λ in Corollary 2.2, then (14) and (15) are replaced by:

S (t) =
∏
j|τ j≤t

(1 − λ j)S 0 , t ≥ τ0 (22)

and
S (t) =

∑
i|τi≤t

λi , t ≥ τ0 , (23)

respectively. Moreover, (22) is the solution process of the discrete-time dynamic system described by Corollary 2.1. Fur-
thermore, dynamic system outlined in Corollary 2.1 provides an innovative alternative approach for finding the discrete-
time survival function (Kaplan & Meier, 1958) in a systematic manner.

We utilize the above presented concepts and results in subsequent sections in a systematic and unified way.

3. Fundamental Results for Continuous and Discrete-Time to Event Dynamic Processes

In this section, we utilize hybrid dynamic model (7) and fundamental analytic Theorem 2.1 for time-to-event process to
develop a general fundamental result. The developed result provides basic analytic and computational tools for estimating
survival state and parameters. The presented approach also provides a systematic and unified way of estimating the
parameters and survival functions.

Let x(t) be the total number of units/individuals operating/alive (or survivals) at time t, for t ∈ [τ0,T ]. It is described by
(11). Let λ and S be hazard/risk rate and survival functions of the units/patients/infectives/species/individuals, respective-
ly. Employing a dynamic model for number of units/species/ individuals coupled with survival state dynamic model (2)
or (7), we present an interconnected hybrid dynamic model below.

Following the argument used in developing dynamic models (Ladde & Ladde, 2012), we introduce the following inter-
connected system of differential equations:


dS = −λ(t)S dt , t ∈ [τ j−1, τ j) ,
S j = (1 − β j)S (τ−j , τ j−1, S j−1) , S (τ0) = 1 ,
dx = (−α(t)x + γ(t))dβ(t) , x(τ0) = x0 , t ∈ [τ j−1, τ j) ,
x j = (1 − α j)x(τ−j , τ j−1, x j−1) + γ j ,

(24)

Remark 3.1. We outline a few important observations that exhibit the role and scope of dynamic approach to illustrate
the existing results (Han et al., 2014; Kim & Proschan, 1991; Thaler, 1984; Kitchin et al., 1980; Kaplan & Meier, 1958)
as special cases.

(i) Dynamic system (24) in the context of (13) (Remark 2.3) is reduced to
dS = −λ(t)S dt , t ∈ [τ j−1, τ j) ,
S j = (1 − β j)S (τ−j , τ j−1, S j−1) , S (τ0) = 1 ,
dx = 0 dt , x(τ0) = x0 , t ∈ [τ j−1, τ j) ,
x j = (1 − α j)x(τ−j , τ j−1, x j−1) + γ j .

(25)

(ii) From Corollary 2.1 in the context of Remark 2.5, in particular (22), system (24) becomes:
dS = 0 dt , t ∈ [τ j−1, τ j) ,
S j = (1 − λ j)S j−1 ,

dx = 0 dt , x(τ0) = x0 ,

x j = (1 − α j)x j−1 + γ j .

(26)
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We note that (26) is a special version of (24). In addition, we refer to system (26) as a totally discrete-time hybrid dynamic
system.

Now, we are ready to present a basic result regarding continuous and discrete time interconnected dynamic of survival
species or objects or thoughts operating under the time-to-event intervention processes. Prior to the formulation of the
fundamental result, we introduce a concept of number of survivals.

Definition 3.1. Let z be a function defied by z(t) = x(t)S (t), where S and x are solution process of (24) for t ∈ [τ0,T ].
Moreover, for each t ∈ [τ0,T ], z(t) stands for the number of survivals at t under an influence of time-to-event process.

Theorem 3.1. Let (x, S ) be a solution process of (24). Then the interconnected hybrid dynamic population model for
time-to-event process (24) and corresponding intervention iterative process are described by:dz = −λ(t)zdt , z(τ j−1) = z j−1 , for t ∈ [τ j−1, τ j) , j ∈ I(1, k) ,

z(τ j) = (1 − α j)(1 − β j)z(τ−j ) + γ j(1 − β j) ,
(27)

and
z(τ j) = (1 − λ(τ j)∆τ j)(1 − α j)(1 − β j)z(τ j−1) + γ j(1 − β j) . (28)

respectively, where z is defined in Definition 3.1 and ∆τ j = τ j − τ j−1 for j ∈ I(1, k).

Proof. For the detailed proof of Theorem 3.1, the readers are encouraged to read the supplementary Section 8.

In the following, we present a few special/trivial cases that exhibit existing results in the framework of hybrid dynamic of
time-to-event interconnected system.

Corollary 3.1. Let us consider a very special/trivial case of Theorem 3.1 as follows:


dS = −λ(t)S dt , t ≥ τ0 ,

dx = 0 dt , t ≥ τ0 ,

x(τ j) = x(τ−j , τ j−1, x j−1) , x(τ0) = x0 , j ∈ I(1, k) .
(29)

Applying Theorem 3.1 and using (27) and (28), (29) reduces todz = −λ(t)zdt , z(τ j−1) = z j−1 , t ∈ [τ j−1, τ j) ,
z(τ j) = z(τ−j , τ j−1, z j−1) = z(τ j−1) , j ∈ I(1, k) ,

(30)

and
z(τ j) =

(
1 − λ(τ j)∆τ j

)
z(τ j−1) . (31)

Corollary 3.2. Let us consider a special case of (24) as follows:dS = −λ(t)S dt , S (τ j−1) = S j−1 , t ∈ [τ j−1, τ j) ,
S (τ j) = S (τ−j , τ j−1, S j−1) ,

(32)

where a j is defined in Example 2.1. Then applying Euler-type discretization scheme (Atkinson, 2008) on [τ j−1, τ
−
j ], yields

S (τ−j ) − S (τ j−1) = −λ(τ j−1)∆τ jS (τ j−1) . (33)

Moreover, from (32) and (33), we have

S (τ j) − S (τ j−1) = −λ(τ j)∆τ jS (τ j−1) . (34)

Corollary 3.3. Under the assumptions of Theorem 3.1 in the context of Remark 3.1(ii), (26) becomes:dz = 0 dt , z(τ j−1) = z j−1 , t ∈ [τ j−1, τ j) ,
z(τ j) = (1 − λ j)(1 − α j)z j−1 + γ j ,

(35)

and
z(τ j) = (1 − λ j)(1 − α j)z(τ j−1) + γ j . (36)
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This corollary is indeed a totally discrete-time version of hybrid dynamic system operating under discrete-time interven-
tion process.

Using Definition 3.1 and the discrete-time iterative process (28), we introduce a couple of definitions.

Definition 3.2. Let τ j−1 and τ j be a pair of consecutive observation times belonging to [0,T ]. z(τ j−1) stands for the
number of survivals at the time τ j−1 for each j ∈ I(1, k). Moreover, z(τ j−1) is the number of survivals under observation
over the sub-interval of time [τ j−1, τ j). z(τ j−1)∆τ j is the amount of time spent under observation/testing/evaluation by
z(τ j−1) survivals over the length ∆τ j of time interval [τ j−1, τ j).

Definition 3.3. For j ∈ I(1, k), z(τ j−1) − z(τ j) stands for the change in number of survivals over the interval of time
[τ j−1, τ j] of length ∆τ j.

Remark 3.2. The discrete-time processes (28), (31), (34) and (36) are referred as our numerical schemes with respect to
interconnected hybrid dynamic models for a survival population dynamic processes. Moreover, from (28), we will intro-
duce three more special numerical schemes, namely, time-to-event: (i) failure/death/removal/infective, (ii) censored/with-
drawn, and (iii) admission/joining/susceptible/relapsed processes. We further note that the presented numerical schemes
allow “ties” with deaths/failure or censored/quiting process. In addition, the population under the presented observation/-
supervision process includes the patient/objects population as a special case.

(i) For each j ∈ I(1, k), let us assume that either τ j−1 and τ j are consecutive failure/death/removal/infective times of
individual/machine/species, or τ j−1 and τ j are censored and failure times, respectively. For α j = γ j = β j = 0, the
numerical scheme (28) for failure/death/removal/infective/etc process data set is described by

z(τ j) = (1 − λ(τ j)∆τ j)z(τ j−1) , (37)

and hence
z(τ j) − z(τ j−1) = −λ(τ j)z(τ j−1)∆τ j , (38)

where τ j−1 is either the failure or censored time.

Moreover, α j = γ j = β j = 0 in (28) coupled with (94) is equivalent to the Kaplan and Meier (1958) assumption,
namely,

x(τ−j ) − x(τ j) = the number of deaths at τ j .

That is
z(τ j−1) − z(τ−j ) = 0 and z(τ j) = z(τ+j ) .

This implies that z(t) is left discontinuous and right continuous at τ j.

(ii) Let us assume that either τ j−1 and τ j are consecutive censored times, or τ j−1 and τ j are failure and censored times,
respectively. For α j = β j = 0, and γc

j stands for the number of censored objects/infectives/etc at a time τ j. The
numerical scheme (28) for censored/listed/identified process data set is described by

z(τ j) =
(
1 − λ(τ j)∆τ j

)
z(τ j−1) − γc

j , (39)

where τ j−1 is either a failure or censored time.

Thus
z(τ j) − z(τ j−1) = −λ(τ j)z(τ j−1)∆τ j − γc

j (40)

Again, we note that α j = β j = 0, γc
j, in the context of (94) is equivalent to the Kaplan and Meier (1958) assumption,

namely,
z(τ j) = z(τ−j ) and z(τ j) − z(τ+j ) = γc

j .

This implies that z(t) is left continuous and right discontinuous at τ j.

(iii) Let us assume that τ j−1 is either failure or censored time, and τ j is a joining/admitting/relapsing time. For α j = 0 and
γa

j denoting the number of objects/infectives that joined the observation process at time τ j. The numerical scheme
(28) for admission/joining/sustainable/recruiting/relapsing process is

z(τ j) =
(
1 − λ(τ j)∆τ j

)
z(τ j−1) + γa

j . (41)

The scheme determined by α j = 0 in (28) with (94) and the addition γa
j in (41) is equivalent to z(τ j) − z(τ−j ) = γa

j
and z(τ j) = z(τ+j ).
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(iv) Remarks (i), (ii) and (iii) remain valid for the iterative processes (28), (31) and (36).

(I) For α j = 0 = β j = γ j in (28), (34) reduces to (38); for α j = 0 = β j = γ j, (36) reduces to z(τ j) = (1−λ j)z(τ j−1).

(II) For α j = 0 = β j and γ j = −γc
j in (28), (28) reduces to (40); for α j = 0 = λ j and γ j = −γc

j, (36) becomes

z(τ j) − z(τ j−1) = (1 − λ j)z(τ j−1) − γc
j . (42)

(III) For α j = 0 = β j and γ j = γ
a
j in (28), and α j = 0 = λ j and γ j = γ

a
j in (36), (28) reduces to (41), and (36)

reduces to
z(τ j) − z(τ j−1) = (1 − λ j)z(τ j−1) + γa

j . (43)

4. Estimations of Risk Rate and Survival Functions

Now, we are ready to find an estimate for the hazard/risk rate and survival functions for interconnected continuous and
discrete-time survival state dynamic processes. For the sake of completeness and clarity, we first introduce a couple of
definitions.

Definition 4.1. For j ∈ I(1, k), let τ j−1 and τ j be consecutive change times under continuous-time state survival dynamic
process. The parameter estimate at τ j is defined by the quotient of change of objects over the consecutive time change
interval [τ j−1, τ j) and the total time spent by the objects under observation over the time interval of length ∆τ j.

Definition 4.2. For j ∈ I(1, k), let τ j−1 and τ j be consecutive change times for discrete-time state survival dynamic
process. The parameter estimate at τ j is defined by the quotient of the change in the number of survival state over the
consecutive time change interval [τ j−1, τ j) and the number of objects at the immediate past time, that is, either the change
time or the censored time.

Remark 4.1. We observe that the Definitions 4.1 and 4.2 are consistent with each other. This statement can be justified
in the context of discrete-time iterative scheme (95) and the continuous and discrete-time hybrid-type descriptions of
survival state dynamic model (25) and totally discrete-time hybrid dynamic system (26).

Now, we are ready to present a main result regarding parameter and survival state estimation problems. This result
includes several existing results as special cases. In the following, we simply state a conceptual computational algorithm.
The detailed proof is given in the supplementary section.

Theorem 4.1. Let us assume that the conditions of Theorem 3.1 in the context of Remarks 3.1 and 3.2(i),(ii) are satisfied.

(a) For j ∈ I(1, k), if τ j−1 and τ j are consecutive risk/failure/removal/death/non-operational times in [τ0,T ] then an
estimate for the hazard/risk rate function at τ j is determined by:

λ̂(τ j) =
z(τ j−1) − z(τ j)

z(τ j−1)∆τ j
, (44)

and an estimate for the hazard/risk rate function is

λ̂(t) = λ̂(τ j) , for t ∈ [τ j−1, τ j) and j ∈ I(1, k) . (45)

(b) For j ∈ I(1, k), if τ j−1 < τ
c
j < τ j, and τc

j is censored time between a pair of consecutive failure times τ j−1 and τ j in
[τ0,T ), then,

(i) a change in the number of items/subjects/thoughts that are under observation over the subinterval [τ j−1, τ j) of
the time interval of study [τ0,T ] is

z(τ j−1) − z(τ j) − γc
j . (46)

(ii) a total amount of time spent under the observation/testing/evaluation of z(τ j−1) − z(τ j) − γc
j

items/patients/infectives/radicals/subjects over the time interval [τ j−1, τ j) is

z(τ j−1)∆τc
j + z(τc

j)∆τ jc , ∆τ jc = τ j − τc
j. (47)
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(iii) an estimate for the hazard/risk rate function at τ j is defined as:

λ̂(τ j) =
z(τ j−1) − z(τ j) − γc

j

z(τ j−1)∆τc
j + z(τc

j)∆τ jc
, (48)

and an estimate for the hazard/risk rate function is

λ̂(t) = λ̂(τ j) , for t ∈ [τ j−1, τ j) and j ∈ I(1, k) . (49)

(iv) Moreover, an estimate for the survival function in (24) is

Ŝ (t) = S 0 exp

 j−1∑
m=1

λ̂m(τm − τm−1) + λ̂ j

(
t − τ j−1

) , t ∈ [τ j−1, τ j). (50)

Remark 4.2. We note that if τc
j = τ j in Theorem 4.1(b), then we have “ties” between censored and failure times. In this

case, ∆τc
j = ∆τ j and ∆τ jc = 0. From this, (47) and (48) reduce to

z(τ j−1)∆τ j , (51)

and

λ̂(τ j) =
z(τ j−1) − z(τ j) − γc

j

z(τ j−1)∆τ j
for j ∈ I(1, k) . (52)

This observation justifies Remark 3.2 regarding the mixed “ties.”

In the following, we exhibit the role and scope of Theorem 4.1. This is achieved by presenting the well-known hazard/risk
rate and survival functions as special cases.

Corollary 4.1. Let us assume that conditions of Corollary 3.3 in the context of Remark 3.2(iv)(I) and (II) are satisfied.

(a) For j ∈ I(1, k), if τ j−1 and τ j are consecutive risk/failure times in [τ0,T ], then employing Remark 3.2(iv)(I) and
Definitions 3.2, 3.3 and 4.2, an estimate for the risk/hazard rate function at τ j is determined by:

λ̂(τ j) =
z(τ j−1) − z(τ j)

z(τ j−1)
, (53)

and
λ(t) = λ̂(τ j) , t ∈ [τ j−1, τ j) . (54)

Substituting (53) into (22), an estimate for the survival function is obtained as:

S (t) =
∏

i|τ j−1≤t

(
1 − λ̂i

)
=

∏
i|τ j−1≤t

(
1 − z(τi−1) − z(τi)

z(τi−1)

)

=
∏

i|τ j−1≤t

(
1 − di

z(τi−1)

)
, t ≥ τ0 , (55)

where di = z(ti−1) − z(τi) is the number of deaths over the consecutive risk/failure time interval [τi−1, τi), τi ≤ τ j−1 ≤
t < τ j for some j ∈ I(1, k).

(b) For j ∈ I(1, k), if τ j−1 < τ
c
j < τ j, and τc

j is censored time between a pair of consecutive risk/failure times τ j−1 and τ j

in [τ0,T ), then, employing Remark 3.2(iv)(II) and Definitions 3.2, 3.3 and 4.2, an estimate for the risk/hazard rate
function at τ j is determined by:

λ̂(τ j) =
z(τ j−1) − z(τ j) − γc

j

z(τc
j)

, (56)

and
λ(t) = λ̂(τ j) , t ∈ [τ j−1, τ j) . (57)
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Substituting (56) into (22), an estimate for the survival function when τc
j is a censored time between consecutive

failure times, τ j−1 and τ j is given by:

S (t) =
∏

i|τ j−1≤t

(
1 − λ̂i

)
=

∏
i|τ j−1≤t

(
1 −

z(τi−1) − z(τi) − γc
i

z(τc
i )

)

=
∏

i|τ j−1≤t

(
1 − di

z(τc
i )

)
, t ≥ τ0 , (58)

where i runs over the positive integers for which τi ≤ τ j−1, τ j−1 ≤ t < t for some j ∈ I(1, k); τi−1, τi are consecutive
failure times for i ∈ I(1, j), and di = z(ti−1) − z(τi) − γc

i is the number of deaths over the consecutive failure time
interval [τ j−1, τ j).

Remark 4.3. (a) We remark that (55) and (58) are indeed the Kaplan and Meier (1958)-type survival estimate functions.

(b) In the literature (Kalbfleisch & Prentice, 2011; Lawless, 2011), the numbers in the denominator of (55) and (58) are
referred to as the number of individuals at rist at τ j−1 and τc

j respectively. Denoting this by n j, we can write both (55)
and (58) as

S (t) =
∏

i|τ j−1≤t

(
ni − di

ni

)
. (59)

This is the well-known formula cited in the literature (Kalbfleisch & Prentice, 2011; Lawless, 2011).

(c) From Remark 2.4, we obtain

Λ̂(t) =
∑
τ j≤t

λ̂ j =
∑
τ j≤t

d j

n j
, t ≥ τ0 , (60)

where

n j =

z(τ j−1) if there are no censors in [τ j−1, τ j) ,
z(τc

j) if τc
j is a censored time in [τ j−1, τ j) .

(61)

This is the estimator introduced by Nelson (1969) and Aalen (1978). These special cases exhibit the role and scope
of the presented innovative alternative dynamic approach.

In the following, we state a corollary that further illustrates the role and scope of our dynamic approach. Further details
regarding the proof is outlined in the supplementary section.

Corollary 4.2. Let us assume that the conditions of Corollary 3.2 and Example 2.1 in the context of Remark 3.2(iii) are
satisfied. For j ∈ I(1, n), if τ j−1 and τ j are consecutive risk/failure times in [τ0,T ], then employing Definitions 3.2, 3.3
and 4.2, an estimate for the risk/hazard rate function at τ j is determined by:

λ̂(τ j) =
a j

(1 − A j−1)∆τ j
, (62)

and
λ̂(t) = λ̂(τ j) , t ∈ [τ j−1, τ j) , (63)

where a j and A j−1 are defined in Example 2.1.

Moreover, an estimate for the survival function is represented by

Ŝ (t) = S j−1 exp
[
−λ̂ j(t − τ j−1)

]
, for t ∈ [τ j−1, τ j) . (64)

Remark 4.4. The PEXE of Kitchin et al. (1980), as well as Kim and Proschan (1991) is undefined beyond the last
observed failure time. To rectify that, Malla and Mukerjee (2010) provided the following exponential tail hazard/risk rate
estimate:

λ̂tail =
exp(−Λ̂m)
m∑

i=1
(I j − J j)

(65)
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where

I j =

∫ τ j

τ j−1

Ŝ KM(t)dt = (1 − A j−1)(τ j − τ j−1)

and

J j =

∫ τ j

τ j−1

Ŝ MN(t) = exp(−Λ̂ j−1)
(1 − A j−1)(τ j − τ j−1)

a j

[
1 − exp

(
−

a j

1 − A j−1

)]
.

Thus, under the following assumptions: (i) no ties among the failure times, (ii) the last observation is uncensored, a new
PEXE of Malla and Mukerjee (2010) is given by

S (t) =

exp(−Λ j−1) exp
(

−a j(t−τ j−1)
(1−A j−1)(τ j−τ j−1)

)
, τ j−1 ≤ t < τ j , j ∈ I(1,m)

exp(−Λ̂m) exp(−λ̂tail(t − τm)) , τm ≤ t < ∞ .
(66)

We further note that the presented dynamic approach does not require the failure function to be invertible.

5. Multiple Censored Times between Consecutive Failure Times

In this section, we further apply the conceptual dynamic results developed in Sections 2 and 3 to multiple censored times
between consecutive failure times. We present a result that provides a very general algorithm for estimating a hazard rate
function for multiple censoring times between consecutive failure times τ j−1 and τ j with τ j−1, τ j ∈ [τ0,T ). We further
note that the presented results in this section extend the results of Section 4 in a systematic and unified manner.

Theorem 5.1. Let the hypotheses of Theorem 3.1 in the context of Remarks 3.1, 3.2(i) and 3.2(ii) be satisfied. For each
j ∈ I(1,m), let τ j−1 and τ j be consecutive failure times. Let {τ j−1l}k j

l=1 be a finite sequence of censored time observations
over a time interval [τ j−1, τ j]. Let γl

j be the number of objects censored at time τ j−1l, for l ∈ I(1, k j) and {γl
j}

k j

l=1 be a
corresponding sequence of observed number of objects/species/patients/etc. Then

1. z(τ j−1)− z(τ j)−
k j∑

l=1
γl

j is a change in the number of items/subjects that is under the observation over the sub-interval

[τ j−1, τ j] of the time interval of study [τ0,T ]

2.
k j+1∑
l=1

z(τ j−1l−1)∆(τ j−1l) is a total amount of time spent under the observation/testing/evaluation/monitoring of z(τ j−1l−1)

items/patients/ infectives/subjects on the interval [τ j−1l−1, τ j−1l) for l ∈ I(1, k j)) and j ∈ I(1, n).

3. an estimate for the hazard rate function at τ j is determined by

λ̂(τ j) =
z(τ j−1) − z(τ j) −

k j∑
l=1
γl

j

k j+1∑
l=1

z(τ j−1l−1)∆(τ j−1l)

, (67)

and an estimate for the hazard rate function is

λ̂(t) = λ̂(τ j) , for t ∈ [τ j−1, τ j) and j ∈ I(1, n) (68)

Proof. The detailed proof of Theorem 5.1 is given in the supplementary section 8.

Corollary 5.1. Under the conditions of Theorem 5.1 and assumptions of Corollary 3.3 in the context of Remark 3.2(iv),
an estimate for the hazard rate function at τ j is determined by

λ̂(τ j) =
z(τ j−1) − z(τ j) −

k j∑
l=1
γl

j

z(τ j−1k j )
, (69)

and an estimate for the hazard rate function is λ̂(t) = λ̂(τ j), for t ∈ [τ j−1, τ j) and j ∈ I(1, n). An estimate for the survival
function is thus given by

Ŝ (t) =
∏

i|τ j−1<t

(1 − λ̂(τi)), t ≥ τ0, τi ≤ τ j−1 ≤ t < τ j for some j ∈ I(1, n). (70)
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Corollary 5.2. Under the conditions of Theorem 5.1 and estimate for the cumulative hazard/risk rate and survival func-
tions are represented by:

Λ̂(t, τ0) =
j−1∑

m=1

λ̂m(τm − τm−1) + λ̂ j

(
t − τ j−1

)
, t ∈ [τ j−1, τ j)

and

Ŝ (t, τ0) = S 0 exp

 j−1∑
m=1

λ̂m(τm − τm−1) + λ̂ j

(
t − τ j−1

) , t ∈ [τ j−1, τ j)

for t ≥ τ0, τ j−1 ≤ t < τ j for some j ∈ I(1, n).

Remark 5.1. (a) We remark that the innovative dynamic approach for the development of computational parameter
estimation algorithm (67) is an alternative approach for the algorithm proposed by Kim and Proschan (1991).

(b) The estimates (67) in the context of (20) yields the estimate obtained by Kulasekera and White (1996) as special cases.

(c) For continuous-time interconnected hybrid state survival dynamic process, if k j = 0, for some j ∈ I(1, n), then l = 0
and γ0

j = 0 and (67) reduces to (44). On the other hand, if k j = 1 for some j ∈ I(1, n), then l = 0 and γ1
j = γ

c
j and (67)

implies (48).

(d) For discrete-time interconnected hybrid state survival dynamic process, if k j = 0, for some j ∈ I(1, n), then l = 0 and
γ0

j = 0 and (69) reduces to (53). On the other hand, if k j = 1, for some j ∈ I(1, n), then l = 0 and γ1
j = γ

c
j and (69) implies

(56).

The presented innovative approach of parameter and state estimation includes the Thaler (1984)-type hazard rate esti-
mation problem as a particular case. To justify this statement, we first introduce a concept of hazard/risk rate function
for responder and non-responder states. In addition, we state a corollary of Theorem 5.1 without its proof. The proof is
outlined in the supplementary section.

Definition 5.1. For i ∈ I(0, 1), Let λ0(t) and λ1(t) represent the hazard/risk rate functions in the non-responder and
responder states, respectively, at time t (Thaler, 1984).

Corollary 5.3. Let us assume that the conditions of Corollary 3.1 in the context of Remark 3.2(i) are satisfied. For
j ∈ I(1, n0), let τ j−1 and τ j be consecutive risk/failure times in state 0. For j′ ∈ (1, n1), let τ j′−1 and τ j′ be consecutive
failure times in state 1. Let z0(τ j) be the number of survivals at τ j in state 0. Let z1(τ j′ ) be the number of survivals at τ j′

in state 1. Then an estimate for the hazard/risk rate function at τ j is determined by:

λ̂0(τ j) =

j∑
m=1

[z0(τm−1) − z0(τm)]

j∑
m=1

z0(τm−1)∆τm

=

j∑
m=1

d0 j

j∑
m=1

z0(τm−1)∆τm

, (71)

where d0 j is the number of deaths/failures at the jth distinct failure time in state i, and an estimate for the hazard rate
function is

λ̂0(t) = λ̂0(τ j) , for t ∈ [τ j−1, τ j) and j ∈ I(1, n0) . (72)

An estimate for the hazard/risk rate function at τ j′ is determined by:

λ̂1(τ j′) =

j′∑
m=1

[z1(τm−1) − z1(τm)]

j′∑
m=1

z1(τm−1)∆τm

=

j∑
m=1

d1 j′

j∑
m=1

z1(τm−1)∆τm

, (73)

where d1 j′ is the number of deaths/failures at the j′th distinct failure time in state 1, and an estimate for the hazard rate
function is

λ̂1(t) = λ̂1(τ j′ ) , for t ∈ [τ j′−1, τ j′ ) and j′ ∈ I(1, n1) . (74)

The hazard/risk ratio rate function estimate is given by:
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The corresponding estimate of the log hazard/risk rate ratio function for patients currently in a response compared to a
nonresponse state is given by:

ρ̂(t) = ln
 λ̂0(τ j)

λ̂1(τ j′)

 for , τ j−1 < t ≤ τ j and τ j′−1 ≤ t < τ j′ . (75)

Remark 5.2. We remark that (71), (73) and (75) are identical to the result obtained in Thaler (1984). Moreover, the
estimates in (71), (73) and (75) were obtained in the framework of an innovative dynamic approach.

In the following, we state a general theorem that provides a theoretical estimate for the hazard/risk rate function between
two successive change point times, τ j−1 and τ j.

Theorem 5.2. Let the hypothesis of Theorem 5.1 be satisfied. Let {T j
i }ni=1 be a sequence of times(failure/ censor/arrival)

that fall between the change point times τ j−1 and τ j for j = I(1, k). Then an estimate for the hazard rate function at τ j is
determined by

λ̂(τ j) = λ̂(τ j) =
z(τ j−1) − z(τ j) −

l∑
m=1
η

j
m

l+1∑
m=1

z(T j
m)∆(T j

m)
, j ∈ I(1, k + 1) . (76)

where

η
j
m =


0 if T j

m is failure time
γ

jc
m if T j

m is censored time
−γ ja

m if T j
m is arrival time

; (77)

γ
jc
m is the number of objects/items/individuals censored at time T j

m; γ ja
m is the number of objects/items/individuals join-

ing/arriving at time T j
m, and an estimate for the hazard rate function is λ(t) = τ̂ j for t ∈ [τ j−1, τ j).

Proof. The proof of Theorem 5.2 is outlined in the supplementary section.

6. Computational Algorithms

In this section, we outline very general conceptual computational, data organizational and simulation schemes. The
computational and simulation algorithms are based on fundamental theoretical result (Theorem 5.1) developed in Section
5.

6.1 Conceptual Computational Parameter and State Estimation Scheme

The theoretical computational algorithm for interconnected continuous-time hybrid dynamic process (24), is as follows:

z(τ j−1) − z(τ j) −
k j∑

l=1

γl
j = λ̂(τ j)

k j+1∑
l=1

z(τ j−1l−1)∆(τ j−1l), (78)

and the conceptual computational algorithm for totally discrete-time hybrid dynamic process (26) is

z(τ j−1) − z(τ j) −
k j∑

l=1

γl
j = λ̂(τ j)z(τ j−1k j ) . (79)

Here PT
0 : τ0 < τ1 < . . . < τ j−1 < τ j < . . . < τn is a partition of failure times over the time interval [0,T ). Let P j be

a partition corresponding to a given finite sequence of censored times over the failure time interval [τ j−1, τ j), and let it be
represented by

P j : τ j−1 = τ j−10 < τ j−11 < . . . < τ j−1l−1 < τ j−1l < . . . < τ j−1k j−1 < τ j−1k j . (80)

For j ∈ I(1, n), λ is the hazard rate function; z(t) stands for the number of survivals at time t; γl
j denotes the number of

objects censored at the time τ j−1l, j ∈ I(1,m) and l ∈ I(0, k j), k j ∈ I(0,∞).

For the continuous-time hybrid dynamic process (24), an estimate of the survival function is represented by

Ŝ (t, τ0) = S 0 exp

 j−1∑
m=1

λ̂m(τm − τm−1) + λ̂ j

(
t − τ j−1

) , t ∈ [τ j−1, τ j) for t ≥ τ0 . (81)
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For the totally discrete-time hybrid dynamic process (26), an estimate of the survival function is represented by

Ŝ (t) =
∏

i|τ j−1<t

(1 − λ̂(τi)), t ≥ τ0. (82)

First, we construct a detailed flowchart for the general conceptual computational algorithm developed in Section 5.

A partition PT

0
of [0,T ] of data

observation time

Formation of consecutive failure subintervals

of [0,T ]: [τ j−1, τ j], τ j−1, τ j ∈ PT

0

Data set ContinuousDiscrete

A check for censored times:

τc
j−1l

∈ [τ j−1, τ j), l ∈ I(0, k j)

A check for censored times:

τc
j−1l

∈ [τ j−1, τ j), l ∈ I(0, k j)

Estimate λ̂(τ j)

(79) with γl
j
= 0

Estimate λ̂(τ j)

(79)

Estimate λ̂(τ j)

(78) with γl
j
= 0

Estimate λ̂(τ j)

(78)

Estimate Ŝ (t) for

t ∈ [τ j−1, τ j) (82)

Estimate Ŝ (t) for

t ∈ [τ j−1, τ j) (81)

no

yes

no

yes

Flowchart 1. Conceptual Computational Algorithm

We observe that the conceptual computational algorithm (Flowchart 1) is composed of two sub-conceptual computational
algorithms, namely, continuous-time and discrete-time hybrid dynamic processes.

6.2 Conceptual and Computational Simulation Algorithms

A pseudocode for a simulation scheme for both interconnected continuous-time and totally discrete-time hybrid dynamic
processes are outlined below:

for j = 1 to N do
Compute k j, z(τ j−1), z(τ j)

if k j = 0 then
Compute z(τ j−1)∆τ j

else

Compute
k j∑

l=1
γl

j,
k j+1∑
l=1

z(τ j−1l−1)∆(τ j−1l)

end if
Compute λ̂(τ j), Ŝ (t)
end for

Simulation Scheme 1a. Pseudocode for interconnected
continuous-time hybrid dynamic process

for j = 1 to N do
Compute k j, z(τ j−1), z(τ j)

if k j = 0 then
Compute z(τ j−1)

else

Compute
k j∑

l=1
γl

j, z(τ j−1k j )

end if
Compute λ̂(τ j), Ŝ (t)
end for

Simulation Scheme 1b. Pseudocode for totally
discrete-time hybrid dynamic process

Moreover, a flowchart for the simulation algorithm for parameter and state estimation problems for interconnected
continuous-time (24) and discrete-time (26) hybrid dynamic processes are provided in Flowchart 2.
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Start

Input data

Data setDiscrete Continuous

Censored times? Censored times? Estimate λ(τ j) (78)

Estimate λ̂(τ j) (78) with γl
j
= 0

Estimate Ŝ (t), t ∈ [τ j−1, τ j) (81)

Estimate λ̂(τ j) (79)

Estimate λ̂(τ j) (79) with γl
j
= 0

Estimate Ŝ (t), t ∈ [τ j−1, τ j) (82)

Stop

yes

no

yes

no

Flowchart 2. Simulation Algorithm for interconnected hybrid dynamic processes

We note that flowchart for simulation algorithm (Flowchart 2) is composed of two sub-simulation algorithms, namely,
continuous-time and totally discrete-time hybrid dynamic processes.

In the following, using the conceptual computational algorithm, we exemplify our theoretical procedure by estimating
hazard rate and survival functions of two data sets in a systematic and unified way. The first data set can be found in
Kaplan and Meier (1958).

Illustration 6.1. Suppose that out of a sample of 8 items the following are observed:

Table 1. Dataset used by Kaplan and Meier (1958)

Order of
Observation

Time of Cessation
of Observation

Cause of
Cessation Time Notation

1 0.8 Failure τ1

2 1.0 Censored τ11

3 2.7 Censored τ12

4 3.1 Failure τ2

5 5.4 Failure τ3

6 7.0 Censored τ31

7 9.2 Failure τ4

8 12.1 Censored
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We note that the data set in Table 1 is for the totally discrete-time hybrid time-to-event dynamic process (26). In view
of this, we apply the totally discrete-time parameter and state estimation schemes (79) and (82). In short, we utilize
the discrete-time conceptual computational sub-algorithm (Simulation Scheme 1b) “pseudocode” and simulation sub-
algorithm (Flowchart 2).

For t ∈ [τ0, τ1), there are no censored times between [τ0, τ1). Therefore, k j = 0, and from Remark 5.1(d) and hence using
(79) we have

λ̂(τ1) = λ̂1 =
z(τ0) − z(τ1)

z(τ0)
=

1
8
.

Utilizing (82), the corresponding survival function is given by

Ŝ (t) =

1 , for t ∈ [τ0, τ1) ,
1 − λ1 =

7
8 , for t = τ1 .

For t ∈ [τ1, τ2), we note that there are two censored times between τ1 and τ2. So, k j = k2 = 2. Hence

2∑
l=1

γl
2 = γ

1
2 + γ

2
2 = 1 + 1 = 2 .

Also, z(τ j−1k j ) = z(τ12) = 5. Thus, from Remark 5.1(d) and hence applying (79), we have

λ̂(τ2) = λ̂2 =

z(τ1) − z(τ2) −
2∑

l=1
γl

2

z(τ12)
=

1
5
.

Utilizing (82), the corresponding survival function is thus given by

Ŝ (t) =


7
8 , for t ∈ [τ1, τ2) ,∏
k|τ j≤t

(1 − λ̂ j) =
2∏

j=1
(1 − λ̂ j) = 7

10 , for t = τ2 .

There is no censoring time between the interval [τ2, τ3) = [3.1, 5.4). Therefore, k j = 0, and from Remark 5.1(d) and hence
using (79) we obtain

λ̂(τ3) =
z(τ2) − z(τ3)

z(τ2)
=

1
4
.

Once again, utilizing (82), the corresponding survival function is thus given by

Ŝ (t) =


7

10 , for t ∈ [τ2, τ3) ,
3∏

j=1
(1 − λ̂ j) = 21

40 , for t = τ3 .

Continuing in this manner, we record the estimates for hazard rate and survival functions in the following table with the
last column exhibiting the survival function estimate as obtained by Kaplan and Meier (1958).

Table 2. Kaplan and Meier Survival estimates for data set given in Kaplan and Meier (1958).

Failure Times
τ j

Survivals
z(τ j)

Hazard Rate Function
λ̂(τ j)

Survival Function
Ŝ (τ j)

0.8 7 1/8 7/8
3.1 4 1/5 7/10
5.4 3 1/4 21/40
9.2 1 1/2 21/80

(12.1) 0 1/2 21/80

Using the dataset in Kim and Proschan (1991) and theoretical computational algorithm, Theorem 5.1, we illustrate the
estimation of hazard rate and survival functions, systematically.
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Illustration 6.2. Suppose that seven items (new) are put on test at time 0. Each item is observed until it fails or until it is
withdrawn, whichever occurs first. The resulting set of observation (Kim & Proschan, 1991) is shown in Table 3 in order
of occurrence.

Table 3. Data from Kim and Proschan (1991)

Order of
Observation

Time of Cessation
of Observation

Cause of
Cessation Time Notation Finite sequence

of censored Time
Size of

sequence
Number of
Censored

0 0
1 2.0 Failure τ1 = τ01 = τ10
2 3.5 Censored τ11 {τ j−1l}2l=1 k2 = 2 {γl

2}2l=13 4.5 Censored τ12
4 6.2 Failure τ2 = τ13 = τ20

5 8.0 Censored τ21 {τ j−1l}1l=1 k3 = 1 {γl
3}2l=1

6 8.8 Failure τ3 = τ22
7 11.3 Failure τ4

The data set in Table 3 is for the interconnected continuous-time hybrid dynamic time-to-event dynamic process (24). In
view of this, we apply the continuous-time parameter and state estimation schemes (78) and (81). In short, we utilize
the continuous-time conceptual computational sub-algorithm (Simulation Scheme 1a) “pseudocode” and simulation sub-
algorithm (Flowchart 2).

For [0, τ1) , since there are no censored times in between [0, τ1), k j = k1 = 0. Thus from Remark 5.1(c) and using (78) we
have

λ̂(τ1) =
z(τ0) − z(τ1)

z(τ0)(τ01 − τ0)
=

1
14
.

Thus λ̂(t) = 1
14 ≈ 0.0714 for t ∈ [τ0, τ1) = [0, 2.0).

For the estimate on [τ1, τ2) = [2.0, 6.2), we note that there are two censoring times between [τ1, τ2), hence k j = k2 = 2
and

2∑
l=1

γl
2 = γ

1
2 + γ

2
2 = 1 + 1 = 2.

Thus from Remark 5.1(c) and thus applying (78), we have

λ̂(τ2) =
z(τ1) − z(τ2) −

k2∑
l=1
γl

2

k2+1∑
l=1

z(τ1l−1)∆τ1l

=

z(τ1) − z(τ2) −
2∑

l=1
γl

2

3∑
l=1

z(τ1l−1)∆τ1l

=
1

20.8
.

Thus, λ̂(t) = 1
20.8 , for t ∈ [2.0, 6.2).

On the interval [τ2, τ3) = [6.2, 8.8), we have only one censoring time in between the two failure times. So, k j = k3 = 1.
Thus from Remark 5.1(c) and hence, using (67), we obtain

λ̂(τ3) =
z(τ2) − z(τ3) −

1∑
l=1
γl

3

2∑
l=1

z(τ2l−1)∆τ2l

=
3 − 1 − 1

z(τ20)∆τ21 + z(τ21)∆τ22
=

1
7
.

Hence, λ̂(t) = 1
7 , for t ∈ [6.2, 8.0).

There is no censoring in the interval [τ3, τ4). Thus,

λ̂(τ4) =
z(τ3) − z(τ4)

z(τ3)∆τ4
=

1
2.5
,

which implies that λ̂(t) = 1
2.5 = 0.4, for t ∈ [8.0, 11.3).
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Following this estimation procedure we have

λ̂(t) =


0.0714 0 ≤ t < τ1 = 2
0.0481 τ1 ≤ t < τ2 = 6.8
0.1429 τ2 ≤ t < τ3 = 8.8
0.4 τ3 ≤ t < τ4 = 11.3 .

(83)

To obtain the estimate of survival function, we use (81) or we apply the solution process described in Section 2 regarding
(7) and obtain exponential pieces on successive intervals between failure times that are joined to form a continuous
function. Thus,

Ŝ (t) =



exp(−0.0714t) , 0 ≤ t < 2
exp [−0.1429 − 0.0481(t − 2)] , 2 ≤ t < 6.2
exp [0.3448 − 0.1429(t − 6.2)] , 6.2 ≤ t < 8.8
exp [0.4591 − 0.4(t − 8.8)] , 8.8 ≤ t < 11.3
no estimator, t ≥ 11.3

(84)

Remark 6.1. These are the same results obtained by using the method proposed Kim and Proschan (1991).

7. Conclusions

Most of the research work in the area of survival and reliability analysis is centered around the probabilistic analysis
approach. In general, a closed-form solution is not feasible. In addition, a hazard rate function is nonlinear in covariate
state processes and non-stationary. The presented linear hybrid deterministic dynamic modeling is more suitable for a
complex time-to-event processes. This innovative approach does not require a closed-form solution distribution. The
influence of both continuous and discrete-time states can be easily incorporated as an interconnected hybrid dynamic
model for time-to-event processes. In fact, it allows to have a time-varying covariate state influence on the dynamic of
a complex survival/reliability of systems. The influence of human mobility, electronic communications, rapid techno-
logical changes, advancements in biological, engineering, medical, military, physical and social sciences is motivated to
initiate, formulate and to develop an innovative interconnected alternative modeling approach for time-to-event processes
in biological, chemical, engineering, epidemiological, medical, multiple-markets and social dynamic processes through
discrete-time intervention processes. The presented innovative modeling approach further enhanced our motivation to de-
velop state and parameter estimation procedures. Moreover, the parameter and state estimation approach is dynamic. The
dynamic nature rather than the existing algebraic approach plays a very significant role in state and parameter estimation
problems in systematic and unifying way. The discrete-time dynamic is exhibited by the two flowcharts and Simulation
algorithms 1(a) and 1(b). Furthermore, the significance of the conceptual computational algorithms are also exhibited by
illustrations. At the initial level of our objective, we began with a very simple observation of the probabilistic definition
of the survival function. This has led to the development of this approach. The role and scope of the presented dynamic
approach is exhibited through several existing results (Han et al., 2014; Malla & Mukerjee, 2010; Kim & Proschan, 1991;
Thaler, 1984; Aalen, 1978; Nelson, 1969; Kaplan & Meier, 1958) as corollaries, illustrations and remarks. In fact, the
full force of the role and scope of hybrid deterministic modeling for time-to-event processes is currently being explored
(Appiah E. A. Time-To-Event Dynamic Processes: Modeling, Methods and Estimations-Ph.D Dissertation, 2017) for both
deterministic and stochastic nonlinear and non-stationary hybrid modeling for time-to-event processes. Furthermore, a
complex time-to-event dynamic study is also currently undertaken by Ladde and his team. These developed results will
be reported elsewhere.

8. Supplements: Proofs of Theorems

In this supplementary section, proofs of a few theorems and corollaries stated in sections 2, 3, 4 and 5 are presented.

Proof of Theorem 2.1: The theorem is proved by the principle of mathematical induction (PMI) (Ladde & Ladde, 2012).
From (11), for j = 1, we have

dx = [−α(t) x + γ(t)]dβ(t), x(t0) = x0, t ∈ [τ0, τ1) .

From (10) and the definition of Riemann-Stieltjes integral (Apostol, 1974), we have

x(t) − x(τ0) =
∫ t

τ0

[−α(s) x(s) + γ(s)]dβ(s) = 0, for t ∈ [τ0, τ1) . (85)
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We define
x(t) = x(t, τ0, x0) = x0(t, τ0, x0) , x0(τ0) = x0, for t ∈ [τ0, τ1) . (86)

From (10), (11), (85), and x0(t, τ0, x0) = x0(τ−1 , τ0, x0) for t ∈ [τ0, τ
−], we have

x0(τ1) − x0(τ0) = 0 +
∫ t

τ−1

[−α(s) x(s) + γ(s)] dβ(s), for t ∈ [τ0, τ1] .

From this, the continuity of α and γ, the definitions of Riemann-Stieltjes integral (Apostol, 1974) and the initial value
problem (Ladde & Ladde, 2012), we have

x0(τ1, τ0, x0) = x0(τ0) + β(τ1)[−α(t∗1)x(t∗1) + γ(t∗1)] − β(t∗1)[−α(t∗1)x(t∗1) + γ(t∗1)]
= x0(τ0) − α1x0(τ−1 , τ0, x0) + γ1 , (87)

for t∗1 ∈ [τ−1 , τ1]. From (87) and setting x0(τ1, τ0, x0) = x(τ1) = x1 and again x(τ−1 , τ0, x0) = x0, we obtain

x1 = x(τ−1 , τ0, x0) − α1x(τ−1 , τ0, x0) + γ1

= (1 − α1)x0 + γ1 . (88)

Continuing the above argument, we can establish the induction hypothesis (Ladde & Ladde, 2012) as:

x j = Φ(τ j, τ0)x0 +

j∑
i=1

Φ(τ j, τi)γi , for x(τ j) = x j ,

where

Φ(τ j, τi) =
j∏

k=i

(1 − αk) ,Φ(τi, τi) = 1 for i ∈ I(0, n) .

Now, we consider
dx =

[−α(t) x + γ(t)
]
dβ(t), x(τ j) = x j, t ∈ [τ j, τ j+1) .

From the definitions of x j and Φ, and using the above argument, one can establish the following:

x j(t) = x(t, τ j, x j) =
j∏

k=1

(1 − αk)x0 +

j−1∑
i=1

Φ(τ j, τi)γi + γ j for t ∈ [τ j, τ j+1) . (89)

Hence x(τ−j+1, τ j, x j) =
j∏

k=1
(1 − αk)x0 +

j∑
i=1
Φ(τ j, τi)γi ,

x j+1(τ j+1, τ j, x j) = (1 − α j+1)x j + γ j+1 .

(90)

Therefore, from (89) and (90), we have

x j+1 = (1 − α j+1)x j + γ j+1

=

j+1∏
k=1

(1 − αk)x0 +

j+1∑
i=1

Φ(τ j+1, τi)γi .

By the application of PMI and the definition of the IVP regarding hybrid dynamic system (Ladde & Ladde, 2012), we
have

x(t) =
∏

k|τ j≤t

(1 − αk)x0 +

j−1∑
i=1

Φ(t, τi)γi + γ j ,

for t ≥ τ0 and t ∈ [τ j−1, τ j+1) . This establishes the proof of the theorem.

Proof of Theorem 3.1: For t ∈ [τ j−1, τ j), j ≥ 1, from Definition 3.1, Remark 3.1 and the nature of S , we have

dz(t) = −λ(t)z(t)dt . (91)
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This establishes the continuous-time dynamic equation in (27). The proof of the discrete-time dynamic part in (27) and
iterative process in (28) are outlined below.

Multiplying the discrete-time iterative process in (24) by S (τ−j ) and noting the fact that S (τ j) = S (τ−j ), we obtain

x(τ j)S (τ j) = (1 − α j)(1 − β j)x(τ−j )S (τ−j ) + γ j(1 − β j)S (τ−j ) . (92)

Moreover, using the definition of z, (92) reduces to

z(τ j) = (1 − α j)(1 − β j)z(τ−j ) + γ j(1 − β j) . (93)

This establishes (27).

Applying the Euler-type numerical scheme (Atkinson, 2008) to (91) over an interval [τ j−1, τ
−
j ], we obtain

z(τ−j ) − z(τ j−1) = −λ(τ j−1)z(τ j−1)∆τ j . (94)

From (93) and (94) , we have

z(τ j) = (1 − λ(τ j)∆τ j)(1 − α j)(1 − β j)z(τ j−1) + γ j(1 − β j) . (95)

(95) exhibits the discrete time dynamic for survival process corresponding to the continuous-time dynamic process de-
scribed in (27) and the discrete-time intervention process. Moreover, (95) exhibits the validity of (28). This establishes
proof of Theorem 3.1.

Proof of Theorem 4.1:

(a) Using the discrete-time iterative scheme (28), Remark 3.2(i)(38) and Definitions 3.2, 3.3 and 4.1, we have

λ(t) = λ̂(τ j) =
z(τ j−1) − z(τ j)

z(τ j−1)∆τ j

for t ∈ [τ j−1, τ j) and j ∈ I(1, k). This establishes (a).

(b) Let τc
j be a censoring time between two consecutive risk/failure times, τ j−1 and τ j. We consider a partition of [τ j−1, τ j]

: τ j−1 < τ
c
j < τ j.

Employing iterative processes in (40) and (38) on respective subintervals [τ j−1, τ
c
j] and [τc

j, τ j], we have

z(τ j) − z(τ j−1) = z(τc
j) − z(τ j−1) + z(τ j) − z(τc

j)

= −λ(τ j−1)∆τc
j − γc

j − λ(τ j)z(τc
j)∆τ jc

= −λ(τ j)
[
z(τ j−1)∆τc

j + z(τc
j)∆τ jc

]
− γc

j . (96)

From (96), we obtain:
z(τ j−1) − z(τ j) − γc

j = λ(τ j)
[
z(τ j−1)∆τc

j + z(τc
j)∆τ jc

]
. (97)

From (97) and knowing that λ(τ j) is the hazard/risk rate of change per unit time per unit object/subject, we conclude
that z(τ j−1) − z(τ j) − γc

j is the number of failure/non-operating objects and z(τ j−1)∆τc
j + z(τc

j)∆τ jc denotes the total
amount of time spent by z(τ j−1) − z(τ j) − γc

j over the the interval [τ j−1, τ j). This establishes (i) and (ii).

To complete the proofs of (iii) and (iv), we utilize Definition 4.1 and (97), and obtain

λ̂(τ j) =
z(τ j−1) − z(τ j) − γc

j

z(τ j−1)∆τc
j + z(τc

j)∆τ jc
for j ∈ I(1, k) .

and hence
λ(t) = λ̂(τ j), t ∈ [τ j−1, τ j) , j ∈ I(1, k) .
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This establishes proof of the theorem.

Proof of Corollary 4.2: Under the conditions of Example 2.1 and using the relationship between S , the cumulative jumps
in Example 2.2, Corollary 3.2(in particular (34)), an estimate for the risk/hazard rate function at τ j is obtained as:

λ̂(τ j) =
a j

(1 − A j−1)∆τ j
, (98)

and an estimate for the risk/hazard rate function is

λ̂(t) = λ̂(τ j) , for t ∈ [τ j−1, τ j) and j ∈ I(1,m) (99)

From (32), using (8) and (99), an estimate for the survival function is given by:

Ŝ (t) = exp(−Λ j−1) exp
( −a j(t − τ j−1)

(1 − A j−1)(τ j − τ j−1)

)
, τ j−1 ≤ t < τ j , (100)

where

Λ j =

j∑
i=1

ai

1 − Ai−1
, 1 ≤ j ≤ m, Λ0 := 0,

and Λ j is the cumulative hazard function. This establishes the proof of the corollary.

Proof of Theorem 5.1: For each j ∈ I(1, n) and τ j−1, τ j ∈PT
0 , objects/subjects are censored k j times over a partition of

[τ j−1, τ j] of consecutive failure times. Let P j be a partition corresponding to a given finite sequence of censored times
over the failure time interval [τ j−1, τ j), and let it be represented by

P j : τ j−1 = τ j−10 < τ j−11 < . . . < τ j−1l−1 < τ j−1l < . . . < τ j−1k j−1 < τ j−1k j . (101)

where P j is a partition of [τ j−1, τ j].

For each j ∈ I(1, n), using the iterative schemes (38) and (40) we have

z(τ j) − z(τ j−1) =
k j∑

l=1

[
z(τ j−1l) − z(τ j−1l−1)

]
+ [z(τ j) − z(τ j−1k j )]

= −λ(τ j)

k j+1∑
l=1

z(τ j−1l−1)∆τ j−1l

 − k j∑
l=1

γl
j , (102)

and hence

z(τ j−1) − z(τ j) −
k j∑

l=1

γl
j = λ(τ j)

k j+1∑
l=1

z(τ j−1l−1)∆(τ j−1l) . (103)

Thus, z(τ j−1) − z(τ j) −
k j∑

l=1
γl

j is a change in the number of items/subjects that are under observation over the subinterval

[τ j−1, τ j], and
k j+1∑
l=1

z(τ j−1l−1)∆(τ j−1l) is a total amount of time spent under the observation/testing/evaluation/monitoring of

z(τ j−1l) items/patients/infectives/subjects on the interval [τ j−1l−1, τ j−1l) for l ∈ I(1, k j)) and j ∈ I(1, n). These statements
establish conclusions 1 and 2 of Theorem 5.1.

Finally, from Definition 4.1, we obtain an estimate for a hazard rate function at τ j ∈ [τ0,T ) as:

λ̂(τ j) =
z(τ j−1) − z(τ j) −

k j∑
l=1
γl

j

k j+1∑
l=1

z(τ j−1l−1)∆(τ j−1l)

.

This establishes (67).

Moreover,
λ̂(t) = λ̂(τ j) , for t ∈ [τ j−1, τ j) and j ∈ I(1, n) . (104)
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This completes the proof of the theorem.

Proof of Theorem 5.2:

Let 0 = τ0 < τ1 < τ2 < . . . < τ j−1 < τ j < . . . < τk be the partition of [τ0,T ) corresponding to change point times.
For j = 1, 2, . . . , k, we consider a partition of [τ j−1, τ j] as follows:

Pτ
j : τ j−1 = T j

0 < T j
1 < T j

2 < T j
3 < . . . < T j

l−1 < T j
l < . . . < T j

n−1 < T j
n < T j

n+1 = τ j . (105)

Imitating the proof of Theorem 5.1, we have

z(τ j) − z(τ j−1) =
l∑

m=1

[
z(T j

m) − z(T j
m−1)

]
+ [z(τ j) − z(T j

l )]

=

l∑
m=1

[
−λ(T j

m−1)z(T j
m−1)∆T j

m − η j
m

]
+ [−λ(T j

l )z(T j
l )∆τ j]

− λ(τ j)

 l∑
m=1

z(T j
m−1)∆T j

m

 − l∑
m=1

η
j
m − λ(τ j)z(t j

l )∆τ j

= −λ(τ j)

 l+1∑
m=1

z(T j
m−1)∆T j

m

 − l∑
m=1

η
j
m , (106)

and hence

z(τ j−1) − z(τ j) −
l∑

m=1

η
j
m = λ(τ j)

l+1∑
m=1

z(T j
m−1)∆T j

m (107)

Thus, z(τ j−1)− z(τ j)−
l∑

m=1
η

j
m is a change in the number of items/subjects that is under the observation over the subinterval

[τ j−1, τ j] of the time interval of study [τ0,T ] and
l+1∑
m=1

z(T j
m)∆T j

m is a total amount of time spent under the observation/test-

ing/evaluation of z(T j
m) items/patients/infectives/subjects on the interval [T j

m−1,T
j

m) for m ∈ I(1, l)) and j ∈ I(1, k). These
statements establish conclusions 1 and 2 of Theorem 5.1.
Finally, from Definition 4.1, we obtain an estimate for a hazard rate function at τ j ∈ [τ0,T ) as:

λ̂(τ j) =
z(τ j−1) − z(τ j) −

l∑
m=1
η

j
m

l+1∑
m=1

z(T j
m−1)∆T j

m

,

Moreover,
λ̂(t) = λ̂(τ j) , for t ∈ [τ j−1, τ j) and j ∈ I(1, k) . (108)

This establishes proof of the theorem.

Proof of Corollary 5.3: Let τ0 < τ1 < . . . < τm−1 < τm < . . . < τ j−1 < τ j < . . . < τn = T be a partition of [τ0,T ]. Using
(31), for fixed i = 0 and j ∈ I(1, n0), we have

z0(τm) − z0(τm−1) = −λ0(τm)z0(τm−1)∆τm . (109)

Summing (109) from m = 1 to j, we obtain

j∑
m=1

[z0(τm) − z0(τm−1)] =
j∑

m=1

−λ0(τm)z0(τm−1)∆m

= −λ0(τ j)
j∑

m=1

z0(τm−1)∆τm . (110)
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Rearranging (110) establishes (71). The proof of (73) is similar to the proof of (71). (75) is obtained by taking the natural
log of the ratio of (71) and (73) . This establishes the proof of the corollary.
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