On the Existence Conditions for Balanced Fractional $2^{m}$ Factorial Designs of Resolution $\mathrm{R}^{\ast}(\{1\}|\mathrm{\Omega}_{\ell})$ with $N<\nu_{\ell}(m)$
- Yoshifumi Hyodo
- Masahide Kuwada
- Hiromu Yumiba
Abstract
We consider a fractional $2^{m}$ factorial design derived from a simple array (SA) such that the $(\ell+1)$-factor and higher-order interactions are assumed to be negligible, where $2\ell\le m$. Under these situations, if at least the main effect is estimable, then a design is said to be of resolution $\mathrm{R}^{\ast}(\{1\}|\mathrm{\Omega}_{\ell})$. In this paper, we give a necessary and sufficient condition for an SA to be a balanced fractional $2^{m}$ factorial design of resolution $\mathrm{R}^{\ast}(\{1\}|\mathrm{\Omega}_{\ell})$ for $\ell=2,3$, where the number of assemblies is less than the number of non-negligible factorial effects. Such a design is concretely characterized by the suffixes of the indices of an SA.
- Full Text: PDF
- DOI:10.5539/ijsp.v5n4p84
This work is licensed under a Creative Commons Attribution 4.0 License.
Index
- ACNP
- Aerospace Database
- BASE (Bielefeld Academic Search Engine)
- CNKI Scholar
- COPAC
- DTU Library
- Elektronische Zeitschriftenbibliothek (EZB)
- EuroPub Database
- Excellence in Research for Australia (ERA)
- Google Scholar
- Harvard Library
- Infotrieve
- JournalTOCs
- LOCKSS
- MIAR
- Mir@bel
- PKP Open Archives Harvester
- Publons
- ResearchGate
- SHERPA/RoMEO
- Standard Periodical Directory
- Technische Informationsbibliothek (TIB)
- UCR Library
- WorldCat
Contact
- Wendy SmithEditorial Assistant
- ijsp@ccsenet.org