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Abstract

We consider a fractional 2m factorial design derived from a simple array (SA) such that the (ℓ+ 1)-factor and higher-order
interactions are assumed to be negligible, where 2ℓ ≤ m. Under these situations, if at least the main effect is estimable,
then a design is said to be of resolution R∗({1}|Ωℓ). In this paper, we give a necessary and sufficient condition for an SA to
be a balanced fractional 2m factorial design of resolution R∗({1}|Ωℓ) for ℓ = 2, 3, where the number of assemblies is less
than the number of non-negligible factorial effects. Such a design is concretely characterized by the suffixes of the indices
of an SA.

Keywords: association algebra, balanced fractional factorial design, estimable parametric function, factorial effect, reso-
lution, simple array

1. Introduction

As a generalization of an orthogonal array, the concept of a balanced array (BA) was first introduced by Chakravarti
(1956) as a partially BA. However it is a generalization of the BIB design rather than of the PBIB design. Thus Srivastava
and Chopra (1971) called it by BA. A BA of strength t, size N, m constraints, two symbols and index set {µ(t)

i | 0 ≤ i ≤ t} is
briefly written by BA(N,m, 2, t; {µ(t)

i }). In particular, a BA of strength t = m is called a simple array (SA) (see Shirakura,
1977), and it is written by SA(m; {λx}) for brevity, where λx = µ

(m)
x . When t < m, a BA of strength t does not always

exist for given indices µ(t)
i . On the other hand, an SA always exists for any λx and any m. The existence conditions for

a BA of strength t were given by Srivastava (1972) for m = t + 1, t + 2, and Shirakura (1977) for m = t + 3. If the
variance-covariance matrix of the estimators of the factorial effects to be of interest is invariant under any permutation
on the factors, then a design is said to be balanced. Under certain conditions, a BA of strength 2ℓ turns out to be a
balanced fractional 2m factorial (2m-BFF) design of resolution 2ℓ + 1 (see for ℓ = 2, Srivastava, 1970, and for general
ℓ, Yamamoto et al., 1975), where 2ℓ ≤ m. The characteristic roots of the information matrix of a 2m-BFF design of
resolution V, i.e., ℓ = 2, were obtained by Srivastava and Chopra (1971). By using the triangular multidimensional
partially balanced (TMDPB) association scheme and its algebra, their results were generalized by Yamamoto et al. (1976)
and Hyodo (1992) for a resolution 2ℓ+1 design, where 2ℓ ≤ m and m < 2ℓ ≤ 2m, respectively. The concept of the MDPB
association scheme, which is a generalization of an ordinary association scheme (e.g., Bailey, 2004), was introduced by
Bose and Srivastava (1964). The existence conditions for a BA of strength 2ℓ to be a 2m-BFF design of resolution 2ℓ for
general ℓ were obtained by Shirakura (1975,1980). Some algebraic properties of the information matrix of a fractional 2m

factorial (2m-FF) design derived from an SA were investigated by Hyodo and Yamamoto (1988) and Hyodo (1989). As
the extension of the concept of resolution, Yamamoto and Hyodo (1984) discussed the extended concept of resolution for
2m fractions.

Definition 1.1. Under the assumption that the (ℓ + 1)-factor and higher-order interactions are negligible, if the p1-factor,
the p2-factor,· · · , and the pr-factor interactions are estimable, where 0 ≤ p1 < p2 < · · · < pr ≤ ℓ, and furthermore if the
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remaining interactions are not estimable (including the general mean and the main effect), then a design is said to be of
resolution R({p1, p2, · · · , pr}|Ωℓ), where Ωℓ = {0, 1, · · · , ℓ}. In particular, when pi = i − 1 (1 ≤ i ≤ r = ℓ + 1), it is of
resolution 2ℓ + 1, and when pi = i (1 ≤ i ≤ r = ℓ − 1) (or pi = i − 1 (1 ≤ i ≤ r = ℓ)), it is of resolution 2ℓ.

By relaxing the conditions of Definition 1.1, we give the following definition of resolution:

Definition 1.2. Under the same assumptions as Definition 1.1, if at least the p1-factor, the p2-factor,· · · , and the pr-
factor interactions are estimable, where 0 ≤ p1 < p2 < · · · < pr ≤ ℓ, then a design is said to be of resolution
R∗({p1, p2, · · · , pr}|Ωℓ).

Note that the set of resolution R({p1, p2, · · · , pr}|Ωℓ) designs is a subset of resolution R∗({p1, p2, · · · , pr}|Ωℓ) designs. For
example, a resolution R∗({1}|Ω3) design is of resolution R(ω|Ω3), where ω = {1}, {0, 1}, {1, 2}, {1, 3}, {0, 1, 2}, {0, 1, 3},
{1, 2, 3} or {0, 1, 2, 3}. Here when a design is derived from an SA, where the number of assemblies (or treatment combina-
tions) is less than the number of non-negligible factorial effects, there does not exist a resolution R({1, 2}|Ω3), R({1, 3}|Ω3),
R({0, 1, 3}|Ω3), R({1, 2, 3}|Ω3) or R({0, 1, 2, 3}|Ω3) design (see Table 4.1 in latter).

In a practical experiment, the most interesting factorial effect may be the main effect, next may be the two-factor inter-
action, and so on. Using the algebraic structure of the TMDPB association scheme and the matrix equations, Kuwada et
al. (2003) obtained a 2m-BFF design of resolution R∗({1}|Ω3). However their results are very complex. A necessary and
sufficient condition for an SA to be a 2m-BFF design of resolution 2ℓ + 1 for general ℓ has been obtained by Hyodo et al.
(2015), where 2ℓ ≤ m.

In this paper, we consider a 2m-BFF design derived from an SA such that the number of assemblies is less than the number
of factorial effects up to the ℓ-factor interaction, where ℓ = 2, 3. Under these situations, using the suffixes of the indices
λx of an SA, we give a necessary and sufficient condition for an SA to be a 2m-BFF design of resolution R∗({1}|Ω2), i.e.,
of resolution IV, and also we rewrite a necessary and sufficient condition for an SA to be a 2m-BFF design of resolution
R∗({1}|Ω3).

2. Preliminaries

We consider a 2m-FF design T with m factors and N assemblies, where 2ℓ ≤ m, and the (ℓ + 1)-factor and higher-order
interactions are assumed to be negligible. Then the linear model is given by y(T ) = ETΘ + eT , where y(T ) is an N × 1
observation vector, ET is the N × νℓ(m) design matrix, Θ′ = (θ′0; θ′1; · · · ; θ′ℓ), and eT is an N × 1 error vector with mean
0N and variance-covariance matrix σ2IN . Here θ0, θ1, · · · , and θℓ are the general mean, the vector of the main effect,· · · ,
and the vector of the ℓ-factor interaction, respectively, νℓ(m) =

(
m
0

)
+

(
m
1

)
+ · · · +

(
m
ℓ

)
, and Ip is the identity matrix of order

p. The normal equations for estimating Θ are given by MT Θ̂ = E′T y(T ), where MT = E′T ET is the information matrix of
order νℓ(m). If MT is non-singular, then T is of resolution 2ℓ + 1.

Let A(u,v)
α (= A(v,u)′

α ) (0 ≤ α ≤ u ≤ v ≤ ℓ) be the local association matrices of size
(

m
u

)
×

(
m
v

)
of the TMDPB association

scheme, and further let A#(u,v)
β (= A#(v,u)′

β ) (0 ≤ β ≤ u ≤ v ≤ ℓ) be the matrices of size
(

m
u

)
×

(
m
v

)
(see Yamamoto et al., 1976),

where the relation between A(u,v)
α and A#(u,v)

β is given by

A(u,v)
α =

u∑
β=0

z(u,v)
βα A#(u,v)

β for 0 ≤ α ≤ u ≤ v

and

A#(u,v)
β =

u∑
α=0

zβα(u,v)A
(u,v)
α for 0 ≤ β ≤ u ≤ v.

Here

z(u,v)
βα =

α∑
b=0

(−1)α−b
(
u − β

b

)(
u − b
u − α

)(
m − u − β + b

b

)√(
m − u − β

v − u

)(
v − β
v − u

)/(v − u + b
b

)
for u ≤ v (1)

and

zβα(u,v) =ϕβz
(u,v)
βα

/ {(m
u

)(
u
α

)(
m − u

v − u + α

)}
for u ≤ v
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(see Shirakura and Kuwada, 1976, and Yamamoto et al., 1976), where ϕβ =
(

m
β

)
−

(
m
β−1

)
. Then some properties of A#(u,v)

β

are cited in the following:

A#(u,w)
β A#(w,v)

γ = δβγA
#(u,v)
β ,

u∑
β=0

A#(u,u)
β = I(m

u) (2)

and

rank{A#(u,v)
β } = ϕβ,

where δβγ is the Kronecker delta.

Let D(u,v)
α (= D(v,u)′

α ) (0 ≤ α ≤ u ≤ v ≤ ℓ) and D#(u,v)
β (= D#(v,u)′

β ) (0 ≤ β ≤ u ≤ v ≤ ℓ) be the matrices of order νℓ(m) such that

the (u + 1)-th row block and the (v + 1)-th column block of D(u,v)
α and D#(u,v)

β are given by A(u,v)
α and A#(u,v)

β , respectively,
and zero at elsewhere. Then the information matrix MT is given by

MT =

ℓ∑
β=0

ℓ−β∑
u=0

ℓ−β∑
v=0

κu,vβ D#(u+β,v+β)
β

(see Yamamoto et al., 1976), where T is a BA(N,m, 2, 2ℓ; {µ(2ℓ)
i }). Here the relation between κu,vβ and µ(2ℓ)

i is given by

κu,vβ

(
= κv,uβ

)
=

u+β∑
α=0

z(u+β,v+β)
βα γv−u+2α for 0 ≤ u ≤ v ≤ ℓ − β and 0 ≤ β ≤ ℓ, (3)

where

γ j =

2ℓ∑
i=0

j∑
p=0

(−1)p
(

j
p

)(
2ℓ − j

i − j + p

)
µ(2ℓ)

i for 0 ≤ j ≤ 2ℓ. (4)

The relation between the indices µ(2ℓ)
i of a BA of strength 2ℓ and λx of an SA is given by

µ(2ℓ)
i =

m∑
x=0

(
m − 2ℓ
x − i

)
λx for 0 ≤ i ≤ 2ℓ. (5)

Note that size N(=number of assemblies) of an SA(m; {λx}) is given by N =
∑m

x=0

(
m
x

)
λx. Furthermore MT is isomorphic

to the symmetric matrices ||κu,vβ ||(= Kβ, say) of order (ℓ − β + 1) , i.e., there exists an orthogonal matrix P of order νℓ(m)
such that

P′MT P = diag [K0; K1, · · · ,K1; K2, · · · ,K2; · · · ; Kℓ, · · · ,Kℓ] , (6)

where Kβ (0 ≤ β ≤ ℓ) are with multiplicities ϕβ. From (6), the following is immediately:

Lemma 2.1. Let T be an SA(m; {λx}). Then the information matrix MT is non-singular, i.e., T is of resolution 2ℓ + 1, if
and only if every Kβ (0 ≤ β ≤ ℓ) is non-singular, i.e., rank{Kβ} = ℓ − β + 1 for all β.

From (1), and (3) through (5), we have the following (see Hyodo and Yamamoto, 1988):

Lemma 2.2. Let T be an SA(m; {λx}). Then we have

κu,vβ =

m−β∑
x=β


2β

/√(
m − 2β

u

)
√
λx

u∑
p=0

(−1)p
(
x − β
u − p

)(
m − β − x

p

)
√(

m − 2β
x − β

)
×


2β

/√(
m − 2β

v

)
√
λx

v∑
q=0

(−1)q
(
x − β
v − q

)(
m − β − x

q

)
√(

m − 2β
x − β

)
for 0 ≤ u ≤ v ≤ ℓ − β, 0 ≤ β ≤ ℓ, and 2ℓ ≤ m.
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Let Fβ (0 ≤ β ≤ ℓ) be the (ℓ − β + 1) × (m − 2β + 1) matrices such that the column vector corresponding to the index
λx (x ∈ Vβ) is given by Fβ(x), where the (u + 1)-th row of Fβ(x) is given by√

λx

u∑
p=0

(−1)p
(
x − β
u − p

)(
m − β − x

p

)
for 0 ≤ u ≤ ℓ − β (7)

and Vβ = {x ∈ N0 | β ≤ x ≤ m − β}. Here N0 is a set of non-negative integers. The (u + 1)-th row and the (v + 1)-th column
of Kβ (0 ≤ u, v ≤ ℓ−β; 0 ≤ β ≤ ℓ) correspond to the (u+β)-factor interaction and the (v+β)-factor one, respectively. Thus
the (u + 1)-th row of Fβ corresponds to the (u + β)-factor interaction. Then from (7), we can easily obtain the following
theorem (e.g., Hyodo et al., 2015):

Theorem 2.1. Let T be an SA(m; {λx}), where 2ℓ ≤ m. Then the matrices Kβ (0 ≤ β ≤ ℓ) can be expressed as Kβ=
(DβFβΛβ)(DβFβΛβ)′, where Dβ and Λβ are the diagonal matrices such that the (u + 1)-th element (0 ≤ u ≤ ℓ − β) of Dβ

and the element of Λβ corresponding to λx are given by 2β
/√(

m−2β
u

)
and

√(
m−2β
x−β

)
, respectively.

It follows from Theorem 2.1 that rank{Kβ} = r-rank{Fβ}, where r-rank{A} denotes the row rank of a matrix A. In order to
obtain the rank of a matrix A, we sometimes apply the “elementary row operations” on it. In this case, we positively use
the notation “r-rank” instead of the rank. Let SVβ = {x ∈ Vβ | λx , 0} (0 ≤ β ≤ ℓ), and further let NSVβ be the cardinal
number of SVβ. Then the following is obtained (see Hyodo et al., 2015):

Theorem 2.2. Let T be an SA(m; {λx}), where 2ℓ ≤ m. Then it holds that r-rank{Fβ(x1, x2, · · · , xnβ )} = min(nβ, ℓ − β + 1)
for {x1, x2, · · · , xnβ } ⊂ SVβ (0 ≤ β ≤ ℓ), where Fβ(x1, x2, · · · , xnβ ) = (Fβ(x1), Fβ(x2), · · · , Fβ(xnβ)). Furthermore the first
min(nβ, ℓ − β + 1) rows of Fβ(x1, x2, · · · , xnβ ) are linearly independent.

The following is due to Ghosh and Kuwada (2001):

Lemma 2.3. Let K = ∥Ki j∥ and L = ∥Li j∥ (i, j = 1, 2, 3) be a positive semi-definite matrix of order n with rank{K} =

rank
{(

K11 K12
K21 K22

)}
= n1 + n2(≥ 1) and some matrix of order n such that L11 = In1 and L1 j = L′j1 = 0n1×n j ( j = 2, 3),

respectively, where Ki j and Li j are both of size ni × n j, and n1 + n2 + n3 = n. Then a matrix equation XK = L with
parameter matrix X of order n has a solution if and only if

(i) n3 = 0, where if n2 ≥ 1, then L22 is arbitrary, or

(ii) n3 ≥ 1, and moreover

(1) when n2 = 0, K33 = 0n3×n3 , and furthermore L33 = 0n3×n3 , or

(2) when n2 ≥ 1, there exists a matrix W of size n3 × n2 such that K3 j = WK2 j ( j = 1, 2, 3), and furthermore
Li3 = Li2W ′ (i = 2, 3), where Li2 are arbitrary.

Remark 2.1. In Lemma 2.3.(i) and (ii)(2), when n2 ≥ 1, without loss of generality, we can put L22 = In2 and L23 = L′32
(= W ′) (if n3 ≥ 1), and hence L33 = WW′. Furthermore we have W = K32K−1

22 .

Let T be an SA(m; {λx}), where 2ℓ ≤ m. Then a set of parametric functions HΘ is estimable if and only if there exists a
matrix X of order νℓ(m) such that XMT = H, where H and X are given by

H =
ℓ∑
β=0

ℓ−β∑
u=0

ℓ−β∑
v=0

hu,v
β D#(u+β,v+β)

β and X =
ℓ∑
β=0

ℓ−β∑
u=0

ℓ−β∑
v=0

χu,v
β D#(u+β,v+β)

β ,

where 2ℓ ≤ m. Thus there exist matrices Xβ such that XβKβ = Hβ for all β (0 ≤ β ≤ ℓ) if and only if T is of resolution
R∗({1}|Ωℓ), where

H0 =



h0,0
0 0 h0,2

0 · · · h0,ℓ
0

0 1 0 · · · 0
h2,0

0 0 h2,2
0 · · · h2,ℓ

0
...
...
...
. . .

...

hℓ,00 0 hℓ,20 · · · hℓ,ℓ0


, H1 =


1 0 · · · 0
0 h1,1

1 · · · h1,ℓ−1
1

...
...

. . .
...

0 hℓ−1,1
1 · · · hℓ−1,ℓ−1

1


and Hγ =


h0,0
γ · · · h0,ℓ−γ

γ

...
. . .

...

hℓ−γ,0γ · · · hℓ−γ,ℓ−γγ

 for γ ≥ 2.
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Let B = diag[B1, B2, B3],C′ = (C′1 C′2 C′3) and ∆ be a diagonal and non-singular matrix of order n(= n1+n2+n3), a matrix

of size n× p with r-rank{C} = r-rank
{(

C1
C2

)}
= n1 + n2, and a diagonal and non-singular matrix of order p, respectively,

where Bi and Ci (i = 1, 2, 3) are of order ni and of size ni × p, respectively. Then we have the following:

Lemma 2.4. Let Z = ||Zi j|| (i, j = 1, 2, 3) be a matrix of order n(= n1 + n2 + n3), where Zi j are of size ni × n j, and let
K(= ||Ki j||) = (BC∆)(BC∆)′ and Ki j = (BiCi∆)(B jC j∆)′, and further let L = ||Li j|| be a matrix given by Lemma 2.3. Then
a matrix equation ZK = L has a solution if and only if

(i) n3 = 0, where if n2 ≥ 1, then L22 is arbitrary, or

(ii) n3 ≥ 1, and moreover

(1) when n2 = 0, it holds C3 = 0n3×p, and furthermore L33 = 0n3×n3 , or

(2) when n2 ≥ 1, there exists a matrix W∗2
(
= C3C′2(C2C′2)−1) of size n3 × n2 such that C3 = W∗2C2, and furthermore

Li3 = Li2
(
B3W∗2 B−1

2
)′ (i = 2, 3), where Li2 are arbitrary.

Proof. (i) When n3 = 0, if n2 ≥ 1, then from Lemma 2.3.(i), we have the required result.

(ii)(1) When n3 ≥ 1 and n2 = 0, it follows from Lemma 2.3.(ii)(1) that K33 = (B3C3∆)(B3C3∆)′= B3C3∆∆
′C′3B′3 = 0n3×n3 ,

and hence C3∆∆
′C′3 = 0n3×n3 , which implies C3∆ = 0n3×p. Thus we get C3 = 0n3×p, and hence L33 = 0n3×n3 .

(2) When ni ≥ 1 (i = 2, 3), from Lemma 2.3.(ii)(2), there exists a matrix W2 of size n3 × n2 such that K3 j = W2K2 j

( j = 1, 2, 3). Since r-rank{C} = r-rank
{(

C1
C2

)}
= n1 + n2, there exists a matrix (W∗1 W∗2 ) of size n3 × (n1 + n2)

such that C3 = (W∗1 W∗2 )
(

C1
C2

)
, where W∗k (k = 1, 2) are of size n3 × nk. Then K3 j = (B3C3∆)(B jC j∆)′ =

{B3(W∗1 W∗2 )
(

C1
C2

)
∆}(B jC j∆)′ = B3{W∗1 B−1

1 (B1C1∆)}(B jC j∆)′ + B3{W∗2 B−1
2 (B2C2∆)}(B jC j∆)′ = B3W∗1 B−1

1 K1 j + B3W∗2

× B−1
2 K2 j = (B3W∗1 B−1

1 B3W∗2 B−1
2 )

(
K1 j

K2 j

)
. Thus we have (K31 K32) = (B3W∗1 B−1

1 B3W∗2 B−1
2 )

(
K11 K12
K21 K22

)
= (0n3×n1 W2)

(
K11 K12
K21 K22

)
. Since

(
K11 K12
K21 K22

)
is non-singular, we get B3W∗1 B−1

1 = 0n3×n1 , i.e., W∗1 = 0n3×n1 ,

and W2 = B3W∗2 B−1
2 .

From Lemma 2.3, the converse is obvious, and hence the required result is obtained.

Let T be an array obtained by interchanging all of symbols 0 and 1 of T , where T is an SA(m; {λx}). Then it can be easily
shown that T is also an SA(m; {λx}), where λx = λm−x for 0 ≤ x ≤ m (e.g., Shirakura and Kuwada, 1975). Note that
T is called a complementary SA (CSA) of T . Furthermore if T is of resolution R∗({1}|Ωℓ), then T is also of resolution
R∗({1}|Ωℓ).
If N ≥ νℓ(m), then there always exists a 2m-BFF design of resolution 2ℓ + 1 (see Hyodo et al., 2015). Thus in the rest of
this paper, we consider a 2m-BFF design of resolution R∗({1}|Ωℓ) derived from an SA with N < νℓ(m) for ℓ = 2, 3.

3. Resolution R∗({1}|Ω2) designs

We now consider case ℓ = 2. Then it follows from (7) that Fβ(x) (0 ≤ β ≤ 2) are given by

F0(x) =
√
λx

 1
2x − m{

(2x − m)2 − m
}
/2

 for x ∈ V0, (8a)

F1(x) =
√
λx

(
1

2x − m

)
for x ∈ V1 (8b)

and

F2(x) =
√
λx (1) for x ∈ V2. (8c)

Let
fβ(x; m) =

{
(2x − m)2 + (2β − m)

}
/2 for x ∈ Vβ (β = 0, 1). (9)

Then we have the following:
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Lemma 3.1. If fβ(x1; m) = fβ(x2; m) for {x1, x2} ⊂ Vβ (β = 0, 1), then x1 + x2 − m = 0.

Proof. If fβ(x1; m) = fβ(x2; m) for {x1, x2} ⊂ Vβ (β = 0, 1), i.e., {(2x1 − m)2 + (2β − m)}/2 = {(2x2 − m)2 + (2β − m)}/2,
then we have (2x1 − m)2 − (2x2 − m)2 = 4(x1 − x2)(x1 + x2 − m) = 0. Thus we get the required result.

The following is the main results of this section:

Theorem 3.1. Let T be an SA(m; {λx}), where SV0 = {x1, x2, · · · , xNSV0 }, N < ν2(m) and m ≥ 4. Then a necessary and
sufficient condition for T to be a 2m-BFF design of resolution R∗({1}|Ω2), i.e., of resolution IV, is that non-zero indices of
an SA satisfy the following:

(i) When NSV0 = 2, x1 = 1 and x2 = m − 1,

(ii) when NSV0 = 3,

(1) x1 = 0, x2 = 1 and x3 = m − 1, or its CSA, or

(2) x1 = 0, x2 = 2 and x3 = 4, where m = 4

and

(iii) when NSV0 = 4, x1 = 0, x2 = 1, x3 = m − 1 and x4 = m.

Proof. See Appendix.

From Theorems 2.1 and 2.2, Lemmas 2.3 and 2.4, and Remark 2.1, we have the following:

Theorem 3.2. If T is a 2m-BFF design of resolution R∗({1}|Ω2), i.e., of resolution IV, derived from an SA(m; {λx}), where
m ≥ 4 and N < ν2(m), and moreover

(i) when NSV0 = 2, A#(0,0)
0 θ0 +

[{
1
/√(

m
2

)}
f0(xi; m)

]
A#(0,2)

0 θ2 (i = 1, 2) and A#(1,1)
0 θ1 are estimable, where {x1, x2} = SV0

and f0(x; m) is given by (9), and furthermore if f0(xi; m) = 0 for all i, then A#(0,0)
0 θ0 is estimable and A#(2,2)

0 θ2 is not
estimable,

(ii) when NSV1 = 1, A#(1,1)
1 θ1 is estimable and A#(2,2)

1 θ2 is not estimable,

(iii) when NSV2 = 0, A#(2,2)
2 θ2 is not estimable

and

(iv) when NSVβ ≥ 3 − β (0 ≤ β ≤ 2), A#(u,u)
β θu (β ≤ u ≤ 2) are estimable.

Note from (2) that if A#(u,u)
β θu are estimable for all β (0 ≤ β ≤ u ≤ 2), then θu is estimable. The results of Theorem 3.1,

and estimable parametric functions and the resolution R(ω|Ω2) for each design are summarized in Table 3.1.

Let K(0)
β (0 ≤ β < ℓ) be the matrices of order (ℓ − β) obtained from Kβ by cutting off its last row and column, and further

let k1′
β =

(
κ0,0β κ

0,1
β · · · κ

0,ℓ−β
β

)
and k2′

β =
(
κ
ℓ−β,0
β κ

ℓ−β,1
β · · · κℓ−β,ℓ−ββ

)
. Then we have the following due to Shirakura (1980):

Proposition 3.1. A necessary and sufficient condition for a BA(N,m, 2, 2ℓ; {µ(2ℓ)
i }), T, say, to be a 2m-BFF design of

resolution 2ℓ is that T satisfies the following condition:

For r integers 0 ≤ β1 < β2 < · · · < βr ≤ ℓ with |Kβ j | = 0 and |Kα| , 0 (α , β j (1 ≤ j ≤ r); 0 ≤ α ≤ ℓ),

(i) when β1 = 0, there exists a scalar d such that k2
0 = dk1

0, |K
(0)
0 | , 0, κℓ−β j,ℓ−β j

β j
= 0 (1 ≤ β j ≤ ℓ) and |K(0)

β j
| , 0 (1 ≤ β j ≤

ℓ − 1)

and

(ii) when β1 ≥ 1, κℓ−β j,ℓ−β j

β j
= 0 (1 ≤ β j ≤ ℓ) and |K(0)

β j
| , 0 (1 ≤ β j ≤ ℓ − 1),

where |A| denotes the determinant of a matrix A.

In a theoretical sense, Proposition 3.1 above is a very useful result. However it is not always practical. Because the
elements κu,vβ of Kβ (0 ≤ u ≤ v ≤ ℓ − β; 0 ≤ β ≤ ℓ) are given by some linear combinations of the indices µ(2ℓ)

i of a BA

(or λx of an SA) (see (3) and (4)). Hence it is not always easy to obtain µ(2ℓ)
i (or λx) such that these indices satisfy some

conditions. As an example, we consider case ℓ = 2:
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Let T be an SA(m; {λx}), where m ≥ 4. Then from (3) through (5), we have

κ0,00 =

m∑
x=0

(
m
x

)
λx(= N),

κ0,10

(
= κ1,00

)
=

1
/√(

m
1

)
m∑

x=0

(2x − m)
(
m
x

)
λx,

κ0,20

(
= κ2,00

)
=

1/
2

√(
m
2

)
 m∑

x=0

{
(2x − m)2 − m

}(m
x

)
λx,

κ1,10 =

{
1
/(m

1

)} m∑
x=0

(2x − m)2
(
m
x

)
λx,

κ1,20

(
= κ2,10

)
=

1/
2

√(
m
1

)(
m
2

)
 m∑

x=0

(2x − m)
{
(2x − m)2 − m

}(m
x

)
λx,

κ2,20 =

[
1
/ {

4
(
m
2

)}] m∑
x=0

{
(2x − m)2 − m

}2
(
m
x

)
λx,

κ0,01 = 22
m−1∑
x=1

(
m − 2
x − 1

)
λx,

κ0,11

(
= κ1,01

)
=

22
/√(

m − 2
1

)
m−1∑
x=1

(2x − m)
(
m − 2
x − 1

)
λx,

κ1,11 =

{
22

/(m − 2
1

)} m−1∑
x=1

(2x − m)2
(
m − 2
x − 1

)
λx

and

κ0,02 =

m−2∑
x=2

(
m − 4
x − 2

)
λx.

Thus it can be easily shown that κ1,11 = 0 if and only if there exists λx∗ such that (2x∗ − m)2 = 0 for x∗ ∈ SV1, and κ0,02 = 0
if and only if λx∗∗ = 0 for any x∗∗ ∈ V2. However it is not so easy to obtain the indices λx such that k2′

0 (= (κ2,00 κ
2,1
0 κ

2,2
0 ))=

dk1′
0 (= d(κ0,00 κ

0,1
0 κ

0,2
0 )) for x ∈ SV0 and some d, that is to say, to obtain λx such that the system of the linear equations

κ2,u0 = dκ0,u0 (u = 0, 1, 2) satisfies for x ∈ SV0 and some d. On the other hand, the elements of Fβ (0 ≤ β ≤ 2) are given
by some polynomial of x of the indices λx of an SA (e.g., Hyodo et al., 2015) as seen from (8). In particular, the element
of the first row of Fβ is all one. Thus it follows from Theorem 2.2 and (8) that if r-rank{F0} = 2 < 3, then there exist
two indices λxi (i = 1, 2) such that xi ∈ SV0 and the elements of the last row of F0(x1, x2) are the same constants, i.e.,
f0(x1; m) = f0(x2; m), where f0(x; m) is given by (9). Next if r-rank{F1} = 1 < 2, then there exists an index λx∗ such that
x∗ ∈ SV1 and the last row of F1(x∗) is 0, i.e., 2x∗ − m = 0, and if r-rank{F2} = 0 < 1, then F2(x∗∗) = 0 for any x∗∗ ∈ V2,
i.e., λx∗∗ = 0. Thus in order to obtain the indices λx of an SA such that they satisfy some conditions, the matrices Fβ and
Theorem 2.2 are very powerful.
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4. Resolution R∗({1}|Ω3) designs

In this section, we consider case ℓ = 3. By use of the properties of the TMDPB association algebra and the matrix
equations, a necessary and sufficient condition for an SA to be a 2m-BFF design of resolution R∗({1}|Ω3) was already given
by Kuwada et al. (2003). However their results are very complex. On the other hand, the elements of Fβ (0 ≤ β ≤ 3)
considered here are given by some polynomial of x of the indexes λx of an SA as in (10) below, and they are very simple.
Thus using these matrices Fβ and Theorem 2.2, we shall rewrite the existence conditions for a 2m-BFF design of resolution
R∗({1}|Ω3) with N < ν3(m).

From (7), Fβ(x) (0 ≤ β ≤ 3) are given by

F0(x) =
√
λx


1

2x − m{
(2x − m)2 − m

}
/2

(2x − m)
{
(2x − m)2 − (3m − 2)

}
/6

 for x ∈ V0, (10a)

F1(x) =
√
λx

 1
2x − m{

(2x − m)2 − (m − 2)
}
/2

 for x ∈ V1, (10b)

F2(x) =
√
λx

(
1

2x − m

)
for x ∈ V2 (10c)

and

F3(x) =
√
λx (1) for x ∈ V3. (10d)

Let
g(x; m) = (2x − m)

{
(2x − m)2 − (3m − 2)

}
/6 for x ∈ V0 and m ≥ 6. (11)

Then we have the following:

Lemma 4.1. (I)(i) If d02 = f0(xi; m) and d03 = g(xi; m) (i = 1, 2) for {x1, x2} ⊂ V0 and m ≥ 6, where d0k (k = 2, 3) are
constants, and f0(x; m) and g(x; m) are given by (9) and (11), respectively, then

(1) when m = 3t2 + 2t + 1 (t ≥ 1), we get xp = t(3t − 1)/2(≥ 1) and xq = (t + 1)(3t + 2)/2(≥ 5) for {p, q} = {1, 2}
and

(2) when m = 3t2 + 4t + 2 (t ≥ 1), we get xp = t(3t + 1)/2(≥ 2) and xq = (t + 1)(3t + 4)/2(≥ 7) for {p, q} = {1, 2}.
Here in (1) and (2) just above, we have d02 = m − 1 and d03 = 0.

(ii) If d0 + f0(xi; m)d2 = g(xi; m) (i = 1, 2, 3) for {x1, x2, x3} ⊂ V0 and m ≥ 6, where dk (k = 0, 2) are constants, then
xp+xq−m , 0 for some {p, q} ⊂ {1, 2, 3} and (2x1−m)(2x2−m)+(2x2−m)(2x3−m)+(2x3−m)(2x1−m)+(3m−2) = 0.
Here

d0 = −
[
(2xp − m)2(2xq − m)2 − m

{
4(xp − xq)2 − (3m − 2)

} − 2(2xp − m)(2xq − m)
]
/{12(xp + xq − m)}

and

d2 =
{
(2xp − m)2 + (2xp − m)(2xq − m) + (2xq − m)2 − (3m − 2)

}
/{6(xp + xq − m)}.

(II)(i) There does not exist a integer x∗1 ∈ V1 such that 2x∗1 −m = 0 and f1(x∗1; m) = 0 for m ≥ 6, where f1(x∗; m) is given
by (9).

(ii) If (2x∗j − m)d∗ = f1(x∗j ; m) ( j = 1, 2) for {x∗1, x∗2} ⊂ V1 and m ≥ 6, where d∗ is a constant, then (2x∗1 − m)(2x∗2 − m) +
(m − 2) = 0. Here d∗ = x∗1 + x∗2 − m.

Proof. (I)(i) If d02 = f0(xi; m) (i = 1, 2) for {x1, x2} ⊂ V0 and m ≥ 6, i.e., f0(x1; m) = f0(x2; m), then from Lemma 3.1, we
have x1 + x2 − m = 0. In addition, if d03 = g(xi; m) (i = 1, 2), i.e., g(x1; m) = g(x2; m), then (2xp − m){(2xp − m)2 −
(3m − 2)} = 0 for some p ∈ {1, 2}. If 2xp − m = 0, then xp = m/2 = xq for q ∈ {1, 2} \ {p}, and hence 2xp − m , 0.
Thus it must be (2xp − m)2 − (3m − 2) = 0. Then it has solutions xp = (m ±

√
3m − 2)/2, which must be integers.
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Thus we put 3m−2 = s2 (s ≥ 4), and hence m = (s2 +2)/3. If s = 3t (t ≥ 2), then m = 3t2 +2/3, if s = 3t+1 (t ≥ 1),
then m = 3t2 +2t+1, and if s = 3t+2 (t ≥ 1), then m = 3t2 +4t+2, and hence s , 3t. Since (2x−m)2 − (3m−2) = 0
for x ∈ {x1, x2}, we get d02 = m − 1 and d03 = 0. Therefore (i) is proved.

(ii) It follows from Theorem 2.2 that the first three rows of F0(x1, x2, x3) are linearly independent, and hence the first
and the third rows of F0(x1, x2, x3) are also linearly independent. Thus there exists {xp, xq} ⊂ {x1, x2, x3} such that
f0(xp; m) , f0(xq; m), i.e., xp+ xq−m , 0. If d0+ f0(xi; m)d2 = g(xi; m) (i = 1, 2, 3), i.e., d0+ [{(2xi−m)2−m}/2]d2 =

(2xi − m){(2xi − m)2 − (3m − 2)}/6, where dk (k = 0, 2) are constants, then we get d0 = −[(2xp − m)2(2xq − m)2 −
m{4(xp − xq)2 − (3m − 2)} − 2(2xp − m)(2xq − m)]/{12(xp + xq − m)} and d2 = {(2xp − m)2 + (2xp − m)(2xq − m) +
(2xq − m)2 − (3m − 2)}/{6(xp + xq − m)} for some {p, q} ⊂ {1, 2, 3}, where xp + xq − m , 0. Substituting d0 and d2
into d0 + f0(xr; m)d2 = g(xr; m) for r ∈ {1, 2, 3} \ {p, q}, we get (2xp − m)(2xq − m) + (2xq − m)(2xr − m) + (2xr −
m)(2xp −m) + (3m − 2)= (2x1 −m)(2x2 −m) + (2x2 −m)(2x3 −m) + (2x3 −m)(2x1 −m) + (3m − 2) = 0, and hence
(ii) is established.

(II)(i) If 2x∗1 − m = 0 and f1(x∗1; m) = 0 for x∗1 ∈ V1, i.e., {(2x∗1 − m)2 − (m − 2)}/2 = −(m − 2)/2 = 0, then m = 2 < 6.
Thus the required result is obtained.

(ii) If (2x∗j − m)d∗ = f1(x∗j; m) ( j = 1, 2) for {x∗1, x∗2} ⊂ V1 and m ≥ 6, i.e., (2x∗j − m)d∗ = {(2x∗j − m)2 − (m − 2)}/2, then
2(x∗1 − x∗2)d∗ = {(2x∗1 − m)2 − (2x∗2 − m)2}/2 = 2(x∗1 − x∗2)(x∗1 + x∗2 − m). Thus we get d∗ = x∗1 + x∗2 − m, and hence
(2x∗1 − m)(2x∗2 − m) + (m − 2) = 0, which is the required result.

The following is the main theorem of this section:

Theorem 4.1. Let T be an SA(m; {λx}), where SV0 = {x1, x2, · · · , xNSV0 }, N < ν3(m) and m ≥ 6. Then a necessary and
sufficient condition for T to be a 2m-BFF design of resolution R∗({1}|Ω3) is that non-zero indices of an SA satisfy the
following:

(i) When NSV0 = 3,

(1) x1 = 1, x2 = 2 and x3 = 5, where m = 6, or its CSA,

(2) x1 = 1, x2 = 2 and x3 = 7, where m = 9, or its CSA, or

(3) x1 = 1, x2 = 3 and x3 = 5, where m = 6,

(ii) when NSV0 = 4,

(1) x1 = 0, x2 = 1, x3 = 2 and x4 = m − 1, or its CSA,

(2) x1 = 0, x2 = 1, x3 = m − 2 and x4 = m − 1, or its CSA,

(3) x1 = 0, x2 = 2, x3 = 4 and x4 = 6, where m = 6,

(4) x1 = 0, x2 = 1, x3 = 2 and x4 = m − 2, or its CSA,

(5) x1 = 0, x2 = 2, x3 = m − 2 and x4 = m − 1, or its CSA,

(6) x1 = 1, x2 = 2, x3 = m − 2 and x4 = m − 1, where m ≥ 7,

(7) x1 = 0, x2 = 1, x3 = 4 and x4 = 7, where m = 7, or its CSA,

(8) x1 = 0, x2 = 1, x3 = 3 and x4 = m − 1, or its CSA,

(9) x1 = 0, x2 = 1, x3 = m − 3 and x4 = m − 1, where m ≥ 7, or its CSA, or

(10) x1 = 0, x2 = 1, x3 = 4 and x4 = 7, where m = 8, or its CSA,

(iii) when NSV0 = 5,

(1) x1 = 0, x2 = 1, x3 = 2, x4 = m − 1 and x5 = m, or its CSA,

(2) x1 = 0, x2 = 1, x3 = 2, x4 = m − 2 and x5 = m, or its CSA,

(3) x1 = 0, x2 = 1, x3 = 2, x4 = m − 2 and x5 = m − 1, where m ≥ 7, or its CSA,

(4) x1 = 0, x2 = 1, x3 = 3, x4 = m − 1 and x5 = m, or its CSA(if m ≥ 7), or

(5) x1 = 0, x2 = 1, x3 = 4, x4 = 7 and x5 = 8, where m = 8

and
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(iv) when NSV0 = 6, x1 = 0, x2 = 1, x3 = 2, x4 = m − 2, x5 = m − 1 and x6 = m, where m ≥ 7.

Proof. Proof is available in the Appendix.

It follows from Theorems 2.1 and 2.2, Lemmas 2.3, 2.4 and 4.1, and Remark 2.1 that we obtain the following:

Theorem 4.2. If T is a 2m-BFF design of resolution R∗({1}|Ω3) derived from an SA(m; {λx}), where m ≥ 6 and N < ν3(m),
and furthermore

(i) when NSV0 = 3, A#(0,0)
0 θ0 +

[{
1
/√(

m
3

)}
d0

]
A#(0,3)

0 θ3, A
#(1,1)
0 θ1 and A#(2,2)

0 θ2 +

[{√(
m
2

)/√(
m
3

)}
d2

]
A#(2,3)

0 θ3 are estimable,

where dk (k = 0, 2) are given in Lemma 4.1.(I)(ii). In particular, if d0 = 0, then A#(0,0)
0 θ0 = θ0 is estimable and A#(3,3)

0 θ3

is not estimable, and also if d2 = 0, then A#(2,2)
0 θ2 is estimable and A#(3,3)

0 θ3 is not estimable.

(ii) When NSV1 = 2, A#(1,1)
1 θ1 and A#(2,2)

1 θ2 +

[{√(
m−2

1

)/√(
m−2

2

)}
d∗

]
A#(2,3)

1 θ3 are estimable, where d∗ is given in Lemma

4.1.(II)(ii). Particularly if d∗ = 0, then A#(2,2)
1 θ2 is estimable and A#(3,3)

1 θ3 is not estimable.

(iii) When NSV2 = 1, A#(2,2)
2 θ2 +

[{
1
/√(

m−4
1

)}
d∗∗

]
A#(2,3)

2 θ3 is estimable, where d∗∗ = 2x∗∗ −m for x∗∗ ∈ SV2. In particular,

if d∗∗ = 0, then A#(2,2)
2 θ2 is estimable and A#(3,3)

2 θ3 is not estimable.

(iv) When NSV3 = 0, A#(3,3)
3 θ3 is not estimable.

(v) When NSVβ ≥ 4 − β (0 ≤ β ≤ 3), A#(u,u)
β θu (β ≤ u ≤ 3) are estimable.

Analogously to Section 3, if A#(u,u)
β θu are estimable for all β (0 ≤ β ≤ u ≤ 3), then θu is estimable. In Table 4.1, the results

of Theorem 4.1, and estimable parametric functions and the resolution R(ω|Ω3) for each design are summarized.

5. Discussion

The class of BFF designs is a subset of FF designs. Thus there may exist a better FF design than a BFF design with respect
to some criterion (e.g., Kuwada, 1982). However BFF designs possess the same advantage over unbalanced designs as
a BIB design does over unbalanced or partially balanced designs. In this paper, we restrict our attention to the class
of 2m-BFF designs derived from SAs. Under these restrictions, we have given a necessary and sufficient condition for
an SA to be a 2m-BFF design of resolution R∗({1}|Ωℓ) for ℓ = 2, 3, where N < νℓ(m). As mentioned earlier, if T is an
SA(m; {λx}), then it is a BA(N,m, 2, t; {µ(t)

i }) for any t (1 ≤ t ≤ m), where the relation between µ(t)
i and λx is given by (5).

When m = t + 1, if there exists a BA of strength t, then it is an SA. However when m = t + 2, there exists a BA of strength
t such that it is not always an SA (e.g., Kuriki and Yamamoto, 1984, and Shirakura, 1977). For example,

T ′ =


0 1 1 0 0 1 1
0 0 0 1 1 1 1
1 0 1 0 1 0 1
1 0 1 1 0 1 0


is a BA(N = 7,m = 4, 2, t = 2; {µ(2)

0 = 1, µ(2)
1 = µ

(2)
2 = 2}), but it is not an SA.

Let T be an SA(m; {λ1 = λm−1 = 1, λx = 0 (x , 1,m − 1)}) with N = 2m, where m ≥ 6. Then under the assumption that

the three-factor and higher-order interactions are negligible, A#(0,0)
0 θ0 +

[
(m − 1)(m − 4)

/ {
2
√(

m
2

)} ]
A#(0,2)

0 θ2, A
#(1,1)
0 θ1 and

A#(u,u)
1 θu (u = 1, 2) are estimable, and A#(2,2)

2 θ2 is not estimable (see Table 3.1.(i)). Thus from (2), A#(1,1)
0 θ1 + A#(1,1)

1 θ1 = θ1
is estimable, and the general mean is confounded with some of the two-factor interaction. On the other hand, under the
assumption that the four-factor and higher-order interactions are negligible,
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r-rank{F0(1,m − 1)}

= r-rank




1 1
−(m − 2) m − 2

(m − 1)(m − 4)/2 (m − 1)(m − 4)/2
−(m − 1)(m − 2)(m − 6)/6 (m − 1)(m − 2)(m − 6)/6




= 2 < 4,
r-rank{F1(1,m − 1)}

= r-rank


 1 1

−(m − 2) m − 2
(m − 2)(m − 3)/2 (m − 2)(m − 3)/2




= 2 < 3

and

r-rank{F2} = r-rank{F3} = 0.

Thus the third row of F0(1,m − 1) equals (m − 1)(m − 4)/2 times the first and its last row equals (m − 1)(m − 6)/6
times the second, and the last row of F1(1,m − 1) equals (m − 2)(m − 3)/2 times the first. Hence from Lemma 2.4,

A#(0,0)
0 θ0+ {(m−4)

√
(m − 1)/(2m)}A#(0,2)

0 θ2, A
#(1,1)
0 θ1+ [(m−6)

√
(m − 1)/{6(m − 2)}]A#(1,3)

0 θ3, A
#(1,1)
1 θ1+

{√(
m−2

2

)}
A#(1,3)

1 θ3

and A#(2,2)
1 θ2 are estimable, and A#(u,u)

γ θu (2 ≤ γ ≤ u ≤ 3) are not estimable. This implies that the main effect is confounded
with some of the three-factor interaction. Therefore if the three-factor and higher-order interactions are negligible, then
T is of resolution R∗({1}|Ω2), and hence it is also of resolution R({1}|Ω2). However if the three-factor interaction is not
negligible, then the main effect is not estimable, and hence it is not of resolution R∗({1}|Ω3).

Appendix

In this Appendix, we provide the proofs of Theorems 3.1 and 4.1.

Proof of Theorem 3.1. We shall prove the claim by listing out all possible cases. In these cases, since SV0 ⊃ SV1 ⊃ SV2,
we have NSV0 ≥ NSV1 ≥ NSV2, and NSVγ − NSVγ+1 ≤ 2 for γ = 0, 1. Furthermore when NSV0 ≥ 5, we have
N ≥ 1 + 1 + m + m +

(
m
2

)
> ν2(m) for m ≥ 4, and hence NSV0 ≤ 4. Then the proof starts with case NSV2 = 0.

[A] When NSV2 = 0, i.e., λx∗∗ = 0 for any x∗∗ ∈ V2, from Theorem 2.2, it must be that 1 ≤ NSV1 ≤ 2 and NSV0 ≥ 2. In
addition,

[a] when NSV1 = 1, i.e., x∗1 = 1 or m − 1, we have r-rank{F1(x∗1)} = 1 < 2. Thus from (8b), the last row of F1(x∗1) must
be 0, i.e., 2x∗1 −m = 0, where m = 2s ≥ 4. However 2x∗1 − m = −(m − 2) < 0 and m − 2 > 0 for m ≥ 4 according as
x∗1 = 1 and m−1, respectively. Therefore in this case, there does not exist a 2m-BFF design of resolution R∗({1}|Ω2).

[b] When NSV1 = 2, i.e., x∗1 = 1 and x∗2 = m − 1, we have r-rank{F1(x∗1, x
∗
2)} = 2.

[1] When NSV0=2, i.e., xi = x∗i (i = 1, 2), we have r-rank{F0(x1, x2)} = 2 < 3. Thus from (8a), the elements of
the last row of F0(x1, x2) must be the same, i.e., f0(x1; m) = f0(x2; m), where f0(x; m) is given by (9). Since
x1 + x2 − m = 0 and ν2(m) − N ≤ ν2(m) − 2m = (m − 4)(m + 1)/2 + 3 > 0 for m ≥ 4, it follows from Lemma
3.1 that case (i) is established.

[2] When NSV0 = 2 + p (p = 1, 2), i.e., x1 = 0 or m (if p = 1) (x1 = 0 (if p = 2)) and xi+1 = x∗i (i = 1, 2) (and
x4 = m (if p = 2)), we have r-rank{F0(x1, x2, · · · , x2+p)} = 3. Then ν2(m)−N ≤ (m−4)(m+1)/2+ (3− p) > 0
for m ≥ 4 and p = 1, 2. Thus cases (ii)(1) and (iii) are proved.

[B] When NSV2 = 1, i.e., 2 ≤ x∗∗1 ≤ m−2, we have r-rank{F2(x∗∗1 )} = 1.When NSV1 = 3,we have N ≥ 2m+
(

m
2

)
> ν2(m)

for m ≥ 4, and hence (NSV2 = 1 ≤)NSV1 ≤ 2. Furthermore from Theorem 2.2, it must be NSV0 ≥ 2.

[a] When NSV1 = 1, i.e., x∗1 = x∗∗1 , we have r-rank{F1(x∗1)} = 1 < 2. Thus from (8b), it must be 2x∗1 −m = 0, and hence
x∗1 = m/2, where m = 2s ≥ 4. Furthermore

[1] when NSV0 = 2, i.e., x1 = 0 or m and x2 = x∗1, we have r-rank{F0(x1, x2)} = 2 < 3. Thus it must be
f0(x1; m) = f0(x2; m) for m ≥ 4. However x1 + x2 − m , 0 for m ≥ 4, and hence, from Lemma 3.1, there does
not exist a 2m-BFF design of resolution R∗({1}|Ω2).
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[2] When NSV0 = 3, i.e., x1 = 0, x2 = x∗1 and x3 = m, we have r-rank{F0(x1, x2, x3)} = 3. When m = 4, we
have 8 ≤ N < ν2(4) = 11, and when m = 2s ≥ 6, ν2(m) − N ≤ ν2(m) − {2 +

(
m
s

)
} ≤

(
m
2

)
+ m −

(
m
3

)
− 1 =

−(m− 6){(m− 6)(m+ 6)+ 35}/6 ≤ 0 for m = 2s ≥ 6. Thus we get m = 4, and hence x1 = 0, x2 = m/2 = 2 and
x3 = 4, which is case (ii)(2).

[b] When NSV1 = 2, i.e., x∗1 = 1 or m − 1 and x∗2 = x∗∗1 , we have r-rank{F1(x∗1, x
∗
2)} = 2. In this case, N ≥ m +

(
m
2

)
=

ν2(m) − 1, and hence it must be NSV0 = 2, i.e., xi = x∗i (i = 1, 2). Then we have r-rank{F0(x1, x2)} = 2 < 3. Thus
from (8a), it must be f0(x1; m) = f0(x2; m) for m ≥ 4. However x1 + x2 −m , 0 for m ≥ 4, and hence, from Lemma
3.1, a 2m-BFF design of resolution R∗({1}|Ω2) does not exist.

[C] When NSV2 = q ≥ 2, where (m − 2) − 1 ≥ q, we have N ≥ q
(

m
2

)
≥ 2

(
m
2

)
> ν2(m) for m ≥ 3 + q. Thus in this case,

there does not exist a 2m-BFF design of resolution R∗({1}|Ω2) with N < ν2(m) for m ≥ 3 + q.

Proof of Theorem 4.1. Similarly to the proof of Theorem 3.1, it will be done by listing out all possible cases. In these
cases, we have SV0 ⊃ SV1 ⊃ SV2 ⊃ SV3, and hence NSV0 ≥ NSV1 ≥ NSV2 ≥ NSV3, and NSVγ − NSVγ+1 ≤ 2 for
γ = 0, 1, 2.Moreover when NSV0 ≥ 7, N ≥ 1 + 1 + m + m +

(
m
2

)
+

(
m
2

)
+

(
m
3

)
> ν3(m) for m ≥ 6, and hence NSV0 ≤ 6.We

also begin the proof with NSV3 = 0.

[A] When NSV3 = 0 (and hence NSV2 ≤ 2), i.e., λx∗∗∗ = 0 for any x∗∗∗ ∈ V3, it follows from Theorem 2.2 that NSV1 ≥ 1
and NSV0 ≥ 2. Moreover

[a] when NSV2 = 0 (and hence NSV1 ≤ 2), and furthermore

[1] when NSV1 = 1, i.e., x∗1 = 1 or m − 1, we have r-rank{F1(x∗1)} = 1 < 3. Thus from Lemma 4.1.(II)(i), there
does not exist a 2m-BFF design of resolution R∗({1}|Ω3).

[2] When NSV1 = 2, i.e., x∗1 = 1 and x∗2 = m − 1, r-rank{F1(x∗1, x
∗
2)} = 2 < 3. Then we have (2x∗1 −m)(2x∗2 −m) +

(m − 2) = −(m − 2)(m − 3) < 0 for m ≥ 6. Therefore from Lemma 4.1.(II)(ii), a 2m-BFF design of resolution
R∗({1}|Ω3) does not exist.

[b] When NSV2 = 1 (and hence NSV1 ≤ 3), i.e., x∗∗1 = 2 or m − 2, we have r-rank{F2(x∗∗1 )} = 1 < 2.

[1] When NSV1 = 1, i.e., x∗1 = x∗∗1 , we have r-rank{F1(x∗1)} = 1 < 3. Then from Lemma 4.1.(II)(i), there does not
exist a 2m-BFF design of resolution R∗({1}|Ω3).

[2] When NSV1 = 2, i.e., x∗1 = 1 or m − 1 and x∗2 = x∗∗1 , we have r-rank{F1(x∗1, x
∗
2)} = 2 < 3. When x∗1 = 1,

(2x∗1 − m)(2x∗2 − m) + (m − 2) = (m − 2)(m − 3) > 0 and −(m − 2)(m − 5) < 0 for m ≥ 6 according as x∗2 = 2
and m − 2, respectively. Thus, it follows from Lemma 4.1.(II)(ii) and the relation of the CSA that there does
not exist a 2m-BFF design of resolution R∗({1}|Ω3).

[3] When NSV1 = 3 (and hence NSV0 ≤ 5), i.e., x∗1 = 1, x∗2 = x∗∗1 and x∗3 = m − 1, r-rank{F1(x∗1, x
∗
2, x
∗
3)} = 3. In

addition,

[3.1] when NSV0 = 3, i.e., xi = x∗i (i = 1, 2, 3), r-rank{F0(x1, x2, x3)} = 3 < 4. Then x1 + x2 −m , 0 for x2 = 2
or m− 2, and m ≥ 6. Furthermore from Lemma 4.1.(I)(ii), we have (2x1 −m)(2x2 −m)+ (2x2 −m)(2x3 −
m) + (2x3 − m)(2x1 − m) + (3m − 2) = −(m − 1)(m − 6) = 0 for x2 = 2 or m − 2. Thus we get m = 6, and
hence x3 = m − 1 = 5. In this case, 27 ≤ N < ν3(6) = 42. Therefore case (i)(1) is established. Here if
x2 = 2, then d0 = 10/3 and d2 = −2/3, and if x2 = m − 2 = 4, then d0 = −10/3 and d2 = 2/3, where dk

(k = 0, 2) are constants given in Lemma 4.1.(I)(ii).
[3.2] When NSV0 = 3 + p (p = 1, 2), i.e., x1 = 0 or m (if p = 1) (x1 = 0 (if p = 2)), x2 = 1, x3 = 2

or m − 2, and x4 = m − 1 (and x5 = m (if p = 2)), we have r-rank{F0(x1, x2, · · · , x3+p)} = 4. Then(
m
2

)
+ 2m + p ≤ N < ν3(m) for m ≥ 6 and p = 1, 2. Thus we obtain cases (ii)(1) and (2), and (iii)(1).

[c] When NSV2 = 2 (and hence NSV1 ≤ 4), i.e., x∗∗1 = 2 and x∗∗2 = m − 2, r-rank{F2(x∗∗1 , x
∗∗
2 )} = 2.

[1] When NSV1=2 (and hence NSV0 ≤ 4), i.e., x∗j = x∗∗j ( j = 1, 2), r-rank{F1(x∗1, x
∗
2)} = 2 < 3. Thus from Lemma

4.1.(II)(ii), (2x∗1 − m)(2x∗2 − m) + (m − 2)= −(m − 3)(m − 6) = 0 for m ≥ 6, and hence we get m = 6 and
x∗2 = m − 2 = 4. In this case, d∗ = 0, where d∗ is a constant given in Lemma 4.1.(II)(ii). Furthermore

[1.1] when NSV0 = 2, i.e., xi = x∗i (i = 1, 2), r-rank{F0(x1, x2)} = 2 < 4. Since m = 6, from Lemma
4.1.(I)(i)(1), we get t = 1, and hence x1 = 1 and x2 = 5, which contradict x1 = 2 and x2 = 4. Thus in this
case, there does not exist a 2m-BFF design of resolution R∗({1}|Ω3).
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[1.2] When NSV0 = 3, i.e., x1 = 0 or m(= 6) and xi+1 = x∗i (i = 1, 2), r-rank{F0(x1, x2, x3)} = 3 < 4. Since
m = 6, we have x1 + x2 −m = −4 , 0 and (2x1 −m)(2x2 −m)+ (2x2 −m)(2x3 −m)+ (2x3 −m)(2x1 −m)+
(3m − 2) = 12 , 0 for x1 = 0. Therefore from Lemma 4.1.(I)(ii) and the relation of the CSA, a 2m-BFF
design of resolution R∗({1}|Ω3) does not exist.

[1.3] When NSV0 = 4, i.e., x1 = 0, xi+1 = x∗i (i = 1, 2) and x4 = m(= 6), r-rank{F0(x1, x2, · · · , x4)} = 4. In this
case, 32 ≤ N < ν3(6) = 42, and hence case (ii)(3) is proved.

[2] When NSV1 = 3 (and hence NSV0 ≤ 5), i.e., x∗1 = 1 or m − 1 and x∗j+1 = x∗∗j ( j = 1, 2), we have
r-rank{F1(x∗1, x

∗
2, x
∗
3)} =3.

[2.1] When NSV0 = 3, i.e., xi = x∗i (i = 1, 2, 3), r-rank{F0(x1, x2, x3)} = 3 < 4. Then x1+x2−m = −(m−3)(, 0)
and 1(, 0) for m ≥ 6 according as x1 = 1 and m − 1, respectively. Furthermore (2x1 − m)(2x2 − m) +
(2x2 − m)(2x3 − m) + (2x3 − m)(2x1 − m) + (3m − 2)= −(m − 2)(m − 9) for x1 = 1 or m − 1. Thus from
Lemma 4.1.(I)(ii), we get m = 9, and hence x1 = 1 or m − 1 = 8 and x3 = m − 2 = 7. In this case,
81 ≤ N < ν3(9) = 130. Thus case (i)(2) is established. If x1 = 1, x2 = 2 and x3 = 7, then we get
d0 = 56/3 and d2 = −7/3, and if x1 = 8, x2 = 2 and x3 = 7, then d0 = −56/3 and d2 = 7/3.

[2.2] When NSV0 = 3 + p (p = 1, 2), i.e., x1 = 0 or m (if p = 1) (x1 = 0 (if p = 2)) and xi+1 = x∗i
(i = 1, 2, 3)(and x5 = m (if p = 2)), we have r-rank{F0(x1, x2, · · · , x3+p)} = 4. Furthermore ν3(m) − N ≤
(m− 6)(m2 + 5)/6+ (6− p) > 0 for m ≥ 6 and p = 1, 2. Thus cases (ii)(4) and (5), and (iii)(2) are proved.

[3] When NSV1 = 4, i.e., x∗1 = 1, x∗2 = 2, x∗3 = m − 2 and x∗4 = m − 1, r-rank{F1(x∗1, x
∗
2, · · · , x∗4)} = 3. Furthermore

when NSV0 = 4 + p (p = 0, 1, 2), i.e., when p = 0, we have xi = x∗i (i = 1, 2, · · · , 4), when p = 1, x1 = 0 or
m and xi+1 = x∗i (i = 1, 2, · · · , 4), and when p = 2, x1 = 0, xi+1 = x∗i (i = 1, 2, · · · , 4) and x6 = m, we have
r-rank{F0(x1, x2, · · · , x4+p)} = 4. Then ν3(m) − N ≤ (m − 6)(m2 − 1)/6 − p= (m − 7)(m2 + m + 6)/6 + (8 − p)
for m ≥ 6 and p = 0, 1, 2. Thus when m = 6, we have ν3(6) − N ≤ 0 for p = 0, 1, 2, and when m ≥ 7,
ν3(m) − N > 0 for p = 0, 1, 2. Therefore we establish cases (ii)(6), (iii)(3) and (iv).

[B] When NSV3 = 1 (and hence NSV2 ≤ 3), i.e., 3 ≤ x∗∗∗1 ≤ m− 3, it follows from Theorem 2.2 that r-rank{F3(x∗∗∗1 )} = 1,
and it must be NSV0 ≥ 2. In addition,

[a] when NSV2 = 1 (and hence NSV1 ≤ 3), i.e., x∗∗1 = x∗∗∗1 , we have r-rank{F2(x∗∗1 )} = 1 < 2.

[1] When NSV1= 1, i.e., x∗1 = x∗∗1 , r-rank{F1(x∗1)} = 1 < 3. Thus from Lemma 4.1.(II)(i), there does not exist a
2m-BFF design of resolution R∗({1}|Ω3).

[2] When NSV1 = 2 (and hence NSV0 ≤ 4), i.e., x∗1 = 1 or m − 1 and x∗2 = x∗∗1 , r-rank{F1(x∗1, x
∗
2)} = 2 < 3. Then

from Lemma 4.1.(II)(ii), it must be (2x∗1 − m)(2x∗2 − m) + (m − 2) = 0 for m ≥ 6. We consider case x∗1 = 1.
Then we have (2x∗1 −m)(2x∗2 −m)+ (m−2) =−(m−2){2x∗2 − (m+1)} = 0 for m ≥ 6, and hence x∗2 = (m+1)/2,
where m = 2s + 1 ≥ 7. Moreover

[2.1] when NSV0 = 2, i.e., xi = x∗i (i = 1, 2), we have r-rank{F0(x1, x2)} = 2 < 4. Since x1 = 1, from Lemma
4.1.(I)(i)(1), we get t = 1, and hence m = 6 and x2 = 5. However m = 6 < 7 and 5 < SV3 for m = 6. Thus
from Lemma 4.1.(I)(i)(1) and the relation of the CSA, a 2m-BFF design of resolution R∗({1}|Ω3) does not
exist.

[2.2] When NSV0 = 3, i.e., x1 = 0 or m and xi+1 = x∗i (i = 1, 2), we have r-rank{F0(x1, x2, x3)} = 3 < 4. Then
it holds xp + xq − m , 0 for any {p, q} ⊂ {1, 2, 3} and m ≥ 7. However when x2 = 1, (2x1 − m)(2x2 −
m) + (2x2 − m)(2x3 − m) + (2x3 − m)(2x1 − m) + (3m − 2) = m(m − 1) > 0 and −m(m − 5) < 0 for m ≥ 7
according as x1 = 0 and m, respectively. Therefore it follows from Lemma 4.1.(I)(ii) and the relation of
the CSA that there does not exist a 2m-BFF design of resolution R∗({1}|Ω3).

[2.3] When NSV0 = 4, i.e., x1 = 0 and xi+1 = x∗i (i = 1, 2) and x4 = m, r-rank{F0(x1, x2, · · · , x4)} = 4.
In this case, when m = 7, we have 44 ≤ N < ν3(7) = 64, and when m = 2s + 1 ≥ 9, ν3(m) − N≤(

m
2

)
+

(
m
3

)
−

(
m
4

)
− 1 <

(
m
2

)
+

(
m
3

)
−

(
m
4

)
= −[(m− 9){(m− 9)(m2 + 8m+ 74)+ 682}/24+ 6] < 0 for m ≥ 9. Thus

we get m = 7, and hence x1 = 0, x2 = 1 or m− 1 = 6, x3 = (m+ 1)/2 = 4 and x4 = m = 7. Therefore case
(ii)(7) is proved.

[3] When NSV1 = 3 (and hence NSV0 ≤ 5), i.e., x∗1 = 1, x∗2 = x∗∗1 and x∗3 = m − 1, we have r-rank{F1(x∗1, x
∗
2, x
∗
3)}

= 3.

[3.1] When NSV0=3, i.e., xi = x∗i (i = 1, 2, 3), r-rank{F0(x1, x2, x3)} = 3 < 4. Then x1 + x2 − m < 0 for m ≥ 6.
Furthermore from Lemma 4.1.(I)(ii), it must be (2x1 −m)(2x2 −m)+(2x2 −m)(2x3 −m)+(2x3 −m)(2x1 −
m)+(3m − 2) = −(m − 1)(m − 6) = 0 for m ≥ 6. Thus we get m = 6, and hence, x1 = 1, x2 = 3 and
x3 = m − 1 = 5. In this case, 32 ≤ N < ν3(6) = 42, and hence we have case (i)(3), and d0 = d2 = 0.
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[3.2] When NSV0 = 3 + p (p = 1, 2), i.e., x1 = 0 or m (if p = 1) (x1 = 0 (if p = 2)), xi+1 = x∗i (i = 1, 2) and
x4 = m − 1 (and x5 = m (if p = 2)), r-rank{F0(x1, x2, · · · , x3+p)} = 4. When x3 = 3 or m − 3 (if m ≥ 7),
ν3(m) − N ≤ (m − 6)(m + 3)/2 + (10 − p) > 0 for m ≥ 6 and p = 1, 2, and hence we obtain cases (ii)(8)
and (9), and (iii)(4). When x3 = 4 and m = 8, ν3(8) − N ≤ 7 − p > 0 for p = 1, 2. Thus cases (ii)(10) and
(iii)(5) are obtained. Furthermore when 4 ≤ x3 ≤ m− 4 and m ≥ 9, then N ≥ p+ 2m+

(
m
x3

)
≥ p+ 2m+

(
m
4

)
,

and hence ν3(m) − N≤
(

m
2

)
+

(
m
3

)
− m −

(
m
4

)
− (p − 1)<

(
m
2

)
+

(
m
3

)
−

(
m
4

)
< 0 for m ≥ 9 and p = 1, 2 (see

[B][a][2][2.3] above). Thus there does not exist a 2m-BFF design of resolution R∗({1}|Ω3) with N < ν3(m)
for m ≥ 9.

[b] When NSV2=2 (and hence NSV1 ≤ 4), i.e., x∗∗1 = 2 or m − 2 and x∗∗2 = x∗∗∗1 , we have r-rank{F2(x∗∗1 , x
∗∗
2 )} = 2.

[1] When NSV1=2, i.e., x∗j = x∗∗j ( j = 1, 2), we have r-rank{F1(x∗1, x
∗
2)} = 2 < 3. Thus from Lemma 4.1.(II)(ii), it

must be (2x∗1 −m)(2x∗2 −m)+ (m− 2) = 0 for m ≥ 6. When x∗1 = 2, we have x∗2 = (m+ 1)/2+ 1/(m− 4), which
is an integer for m = 6 only, and hence x∗2 = 4. However 4 does not belong to SV3 for m = 6. Therefore from
Lemma 4.1.(II)(ii) and the relation of the CSA, there does not exist a 2m-BFF design of resolution R∗({1}|Ω3).

[2] When NSV1 = 3 (and hence NSV0 ≤ 5), i.e., x∗1 = 1 or m − 1 and x∗j+1 = x∗∗j ( j = 1, 2), we have

r-rank{F1(x∗1, x
∗
2, x
∗
3)} = 3. In this case, N ≥ m +

(
m
2

)
+

(
m
x∗3

)
for m ≥ 6. Thus when 4 ≤ x∗3 ≤ m − 4 and

m ≥ 8, N ≥ m +
(

m
2

)
+

(
m
4

)
> ν3(m), and hence we only consider case x∗3 = 3 or m − 3 (if m ≥ 7) for m ≥ 6.

[2.1] When NSV0 = 3, i.e., xi = x∗i (i = 1, 2, 3), we have r-rank{F0(x1, x2, x3)} = 3 < 4. Then xs + xt − m , 0
for any {s, t} ⊂ {1, 2, 3}. Moreover when x1 = 1, (2x1−m)(2x2−m)+ (2x2−m)(2x3−m)+ (2x3−m)(2x1−
m) + (3m − 2) = 3(m2 − 7m + 14), −(m2 − 15m + 30), −(m2 − 11m + 22) and −(m2 − 7m − 2) according
as x2 = 2 and x3 = 3, x2 = 2 and x3 = m − 3, x2 = m − 2 and x3 = 3, and x2 = m − 2 and x3 = m − 3,
respectively. However m2 − 7m+ 14 = (m− 6)(m− 1)+ 8 > 0 for m ≥ 6, and furthermore three quadratic
equations m2 − 15m + 30 = 0, m2 − 11m + 22 = 0 and m2 − 7m − 2 = 0 do not have an integer solution
for m ≥ 6. Therefore from Lemma 4.1.(I)(ii) and the relation of the CSA, there does not exist a 2m-BFF
design of resolution R∗({1}|Ω3).

[2.2] When NSV0 = 3 + p (p = 1, 2), we have N ≥ p + m +
(

m
2

)
+

(
m
3

)
≥ ν3(m) for m ≥ 6 and p = 1, 2. Thus

there does not exist a 2m-BFF design of resolution R∗({1}|Ω3) with N < ν3(m).

[3] When NSV1 = 4, we have N ≥ 2m+
(

m
2

)
+

(
m
3

)
> ν3(m) for m ≥ 6. Hence there does not exist a 2m-BFF design

of resolution R∗({1}|Ω3) with N < ν3(m).

[c] When NSV2 = 3, we have N ≥ 2
(

m
2

)
+

(
m
3

)
> ν3(m), and hence a 2m-BFF design of resolution R∗({1}|Ω3) with

N < ν3(m) does not exist.

[C] When NSV3 = q ≥ 2, where (m − 3) − 2 ≥ q, it holds that
(

m
3

)
> 1 + m +

(
m
2

)
for m ≥ 5 + q ≥ 7. Thus we have

N ≥ q
(

m
3

)
≥ 2

(
m
3

)
> ν3(m). Therefore there does not exist a 2m-BFF design of resolution R∗({1}|Ω3) with N < ν3(m) for

m ≥ 5 + q.

Therefore the proof is complete.
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