Uniform Distribution as the Limiting Form of a Density Function
- Hasan A. Al-Halees
Abstract
The uniform distribution, denoted by U(x;A,B)=1/(B-A) if 0<A<x<B<∞ and zero otherwise, is the simplest probability density functions of a continuous random variable X. For a continuous random variable X on the interval (0, 1), a three parameters density function, denoted by h(x;A,B,n), is constructed so that its limiting form is the uniform density function U(x;A,B) in which n→∞.
- Full Text:
PDF
- DOI:10.5539/ijsp.v12n3p18
Index
- ACNP
- Aerospace Database
- BASE (Bielefeld Academic Search Engine)
- CNKI Scholar
- DTU Library
- Elektronische Zeitschriftenbibliothek (EZB)
- EuroPub Database
- Excellence in Research for Australia (ERA)
- Google Scholar
- Harvard Library
- Infotrieve
- JournalTOCs
- Mir@bel
- Open policy finder
- ResearchGate
- Technische Informationsbibliothek (TIB)
- UCR Library
- WorldCat
Contact
- Wendy SmithEditorial Assistant
- ijsp@ccsenet.org