Uniform Distribution as the Limiting Form of a Density Function
- Hasan A. Al-Halees
Abstract
The uniform distribution, denoted by U(x;A,B)=1/(B-A) if 0<A<x<B<∞ and zero otherwise, is the simplest probability density functions of a continuous random variable X. For a continuous random variable X on the interval (0, 1), a three parameters density function, denoted by h(x;A,B,n), is constructed so that its limiting form is the uniform density function U(x;A,B) in which n→∞.
- Full Text: PDF
- DOI:10.5539/ijsp.v12n3p18
This work is licensed under a Creative Commons Attribution 4.0 License.
Index
- ACNP
- Aerospace Database
- BASE (Bielefeld Academic Search Engine)
- CNKI Scholar
- COPAC
- DTU Library
- Elektronische Zeitschriftenbibliothek (EZB)
- EuroPub Database
- Excellence in Research for Australia (ERA)
- Google Scholar
- Harvard Library
- Infotrieve
- JournalTOCs
- LOCKSS
- MIAR
- Mir@bel
- PKP Open Archives Harvester
- Publons
- ResearchGate
- SHERPA/RoMEO
- Standard Periodical Directory
- Technische Informationsbibliothek (TIB)
- UCR Library
- WorldCat
Contact
- Wendy SmithEditorial Assistant
- ijsp@ccsenet.org