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Abstract 

The uniform distribution, denoted by 𝑈(𝑥; 𝐴, 𝐵) = 1/(𝐵 − 𝐴) if 0 < 𝐴 < 𝑥 < 𝐵 < ∞ and zero otherwise, is the 

simplest probability density functions of a continuous random variable X. For a continuous random variable X on the 

interval (0, 1), a three parameters density function, denoted by ℎ(𝑥; 𝐴, 𝐵, 𝑛), is constructed so that its limiting form is 

the uniform density function 𝑈(𝑥; 𝐴, 𝐵) in which 𝑛 → ∞.   
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1. Introduction 

The intention is to generalize the well-known uniform distribution 𝑈(𝑥; 𝐴, 𝐵) where 0 < 𝐴 < 𝑥 < 𝐵 < ∞. The power 

functions 𝑥𝑛 and 𝑥1/𝑛 for all 𝑛 ∈ (1, ∞), are used to construct a probability density function, denoted by ℎ(𝑥; 𝑛), 

whose limiting form, in which 𝑛 → ∞, is the uniform distribution 𝑈(𝑥; 0, 1), with 0 < 𝑥 < 1. This density function 

will be called the standard h-distribution. A general form of ℎ(𝑥; 𝑛), denoted by ℎ(𝑥; 𝐴, 𝐵, 𝑛), is also constructed so 

that its limiting form is the uniform distribution 𝑈(𝑥; 𝐴, 𝐵) in which 𝑛 → ∞. The density function ℎ(𝑥; 𝑛) and its 

general form are not only important as generalization of an existing distribution, but also, they are applicable in many 

branches of science, such as the medical field, mineral industry, and technology. First, let us recall the following 

well-known facts that are needed for this work.  

The set of all possible outcomes of a statistical experiment is called a sample space. A sample space is called continuous 

if it contains a noncountable number of possibilities. A random variable 𝑋 is a real-valued function on the sample 

space. When the random variable assumes noncountable number of values, it is called a continuous random variable. To 

calculate the probabilities that a continuous random variable assumes values from a certain interval of real numbers, we 

must derive its probability density function. The probability density function for a continuous random variable is 

constructed so that the area under its curve bounded by the x-axis is equal to 1. A function 𝑓(𝑥) is called a probability 

density function of a continuous random variable X, if the following hold. 

1.    𝑓(𝑥) ≥ 0  for all real numbers x           2. ∫ 𝑓(𝑥)𝑑𝑥 = 1

∞

−∞

           3.     𝑃(𝑎 < 𝑥 < 𝑏) = ∫ 𝑓(𝑥)𝑑𝑥

𝑏

𝑎

                (0) 

For a continuous random variable, nonzero probabilities are associated only with interval of numbers. Because of 

condition 3 in (0), the probability of occurrence of a single value of this random variable is zero.     

The cumulative distribution function, the rth moment of the distribution, and the variance of a continuous random 

variable 𝑋 with probability density function 𝑓(𝑥), are denoted, respectively, by   

   𝐹(𝑥) = 𝑃(𝑋 ≤ 𝑥) = ∫ 𝑓(𝑡)𝑑𝑡

𝑥

−∞

;       𝐸(𝑋𝑟) = ∫ 𝑥𝑟𝑓(𝑥)𝑑𝑥

∞

−∞

, 𝑟 = 1, 2, … . ;       𝑉(𝑋) = 𝐸(𝑋2) − [𝐸(𝑋)]2            (1) 

Standard deviation √𝑉(𝑋) is the amount of dispersion from the mean of values that random variable 𝑋 can assume.  

Intermediate Value Theorem If 𝑓 is a continuous function on the closed interval [𝑎, 𝑏], and K is a number between 

𝑓(𝑎) and 𝑓(𝑏), where 𝑓(𝑎)  ≠ 𝑓(𝑏), then there exists a number 𝑐 in the open interval (𝑎, 𝑏 ) such that 𝑓(𝑐) = K.    

2. Method 

2.1 The Standard h-Distribution 

The functions 𝑥𝑛 and 𝑥1/𝑛 for all 𝑛 ∈ (1, ∞), are inverse to each other and their graphs are crossing each other at 
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the points 𝑥 = 0 and 𝑥 = 1. The area between the two curves is    

                                                    𝐴𝑛 = ∫(𝑥1/𝑛 − 𝑥𝑛)

1

0

𝑑𝑥 =
𝑛 − 1

𝑛 + 1
                                                                         (2) 

The function denoted by  

  ℎ(𝑥; 𝑛) = {
𝑛 + 1

𝑛 − 1
(𝑥1/𝑛 − 𝑥𝑛) 0 < 𝑥 < 1

0 𝑂𝑊

                                                             (3) 

is a probability density function for a continuous random variable 𝑋 (defined over a set of real numbers) due to 

1.    ℎ(𝑥; 𝑛) ≥ 0 for all real numbers x, since for 𝑛 > 1, 0 < 𝑥 < 1, the ratio  
𝑛 + 1

𝑛 − 1
> 0 and 𝑥1/𝑛 − 𝑥𝑛 > 0.   

2.     ∫ ℎ(𝑥; 𝑛)

1

0

𝑑𝑥 = 1, by (2)                                                                                                                                      

3.     𝑃(𝑎 < 𝑥 < 𝑏) = ∫ ℎ(𝑥; 𝑛)

𝑏

𝑎

    𝑤ℎ𝑒𝑟𝑒 0 < 𝑎 < 𝑏 < 1                                                                                                    

The probability density function in (3) is the standard h-distribution, where 𝑛 ∈ (1, ∞).  

In the medical field, it is reasonable to claim that the time it takes to complete a surgery on part of a body is 

proportional to the size of the wound that is needed to perform the surgery through. The diameter of the needle that is 

needed to sew the wound is also proportional to the size of the wound. Hence, the diameter of the needle that is needed 

is, consequently, proportional to the time that is needed to sew the wound and complete the surgery. So, the diameter 𝑋 

of a certain needle may be taken to be a random variable that is distributed uniformly between, say, 0 and 1 units of time. 

Furthermore, the efficiency of a certain medical component that is used during a certain surgery may be taken to be a 

uniform random variable 𝑋 between A and B units of time. By the way, Japan manufactures the smallest needle that 

can be used to sew the blood veins. 

If ℎ(𝑦; 𝑛) is defined by 

ℎ(𝑦; 𝑛) = {
𝑛+1

𝑛−1
(𝑦1/𝑛 − 𝑦𝑛) 𝐴 < 𝑦 < 𝐵,   𝐴, 𝐵 ∈ (0, 1)

0 𝑂𝑊
, 

then, applying the linear transformation 𝑋 =
𝑦−𝐴

𝐵−𝐴
  to it, we get back the distribution (3) for the random variable 𝑋 

over the interval (0, 1). That is,  

  ℎ(𝑥; 𝑛) = {
𝑛 + 1

𝑛 − 1
(𝑥

1
𝑛 − 𝑥𝑛) 0 < 𝑥 < 1

0 𝑂𝑊

      

a. The cumulative distribution function 𝑭(𝒙; 𝒏) of a random variable 𝑿 with the density function 𝒉(𝒙; 𝒏). 

 𝐹(𝑥; 𝑛) = 𝑃(𝑋 ≤ 𝑥) = ∫ ℎ(𝑡; 𝑛)

𝑥

0

𝑑𝑡 = ∫
𝑛 + 1

𝑛 − 1

𝑥

0

 (𝑡
1
𝑛 − 𝑡𝑛)  𝑑𝑡 =

1

𝑛 − 1
(𝑛𝑥

𝑛+1
𝑛 − 𝑥𝑛+1)  
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                       =
𝑥

𝑛 − 1
(𝑛𝑥

1
𝑛 − 𝑥𝑛) ,   0 < 𝑥 < 1                                                                 (4) 

In piecewise defined form,          

𝐹(𝑥; 𝑛) = {

0 𝑥 ≤ 0,
𝑥

𝑛 − 1
(𝑛 𝑥

1
𝑛 − 𝑥𝑛) 0 < 𝑥 < 1,

1 𝑥 ≥ 1.

 

b. The expected value and variance of continuous random variable 𝑿 with the density function 𝒉(𝒙; 𝒏). 

For 𝑟 = 1, 2, … , the expected value of the statistic Xr (or the rth moment of the distribution of 𝑋) is   

        𝐸(𝑋𝑟;   𝑛) = ∫ 𝑥𝑟ℎ(𝑥; 𝑛) 𝑑𝑥

∞

−∞

=
𝑛 + 1

𝑛 − 1
∫ (𝑥

𝑟𝑛+1
𝑛 − 𝑥𝑛+𝑟)

1

0

𝑑𝑥 =
(𝑛 + 1)2

[(𝑟 + 1)𝑛 + 1](𝑛 + 𝑟 + 1)
             (5) 

This implies that 

     𝜇 𝑋,𝑛 = 𝐸(𝑋;  𝑛) =
(𝑛 + 1)2

(2𝑛 + 1)(𝑛 + 2)
 ,            𝑎𝑛𝑑            𝐸(𝑋2;  𝑛) =

(𝑛 + 1)2

(3𝑛 + 1)(𝑛 + 3)
 ,             (6) 

Hence, the variance by (1) is       

𝜎𝑋,𝑛
2 = V(𝑋; n) =

(𝑛 + 1)2

(3𝑛 + 1)(𝑛 + 3)
−

(𝑛 + 1)4

(2𝑛 + 1)2(𝑛 + 2)2
= (𝑛 + 1)2 [

𝑛4 + 4𝑛3 + 7𝑛2 + 4𝑛 + 1

(3𝑛 + 1)(𝑛 + 3)(2𝑛 + 1)2(𝑛 + 2)2
] (7) 

Theorem 1 For all x in (0, 1), the sequence of functions ℎ(𝑥; 𝑛) converges pointwise to the uniform distribution 

𝑈(𝑥; 0, 1). 

Proof. For any fixed 𝑥 in (0, 1), lim𝑛→∞ 𝑥1/𝑛 = 𝑥0 = 1 and lim𝑛→∞ 𝑥𝑛 = 0. Therefore,   

ℎ(𝑥; ∞) = lim𝑛→∞ ℎ(𝑥; 𝑛) = lim𝑛→∞
𝑛+1

𝑛−1
(𝑥

1

𝑛 − 𝑥𝑛) = 1(1 − 0) = 1, for all 𝑥 in (0, 1).  

In piecewise defined form,  

ℎ(𝑥;  ∞) = {
1 0 < 𝑥 < 1
0 𝑂𝑊

 

which is indeed the uniform distribution 𝑈(𝑥; 0, 1) of the random variable X over the interval [0, 1]. ∎ 

Figure 1.1 below shows how the standard h-distribution ℎ(𝑥; 𝑛) approaches the uniform distribution 𝑈(𝑥; 0, 1) as 𝑛 

approaches infinity. It shows that, as 𝑛 is getting bigger, the graph of ℎ(𝑥; 𝑛) is getting closer to the graph of the 

density function 𝑈(𝑥; 0, 1).    

 

Figure 1.1. ℎ(𝑥; 𝑛) 
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For each 𝑛 > 1, the density function ℎ(𝑥; 𝑛) is skewed to the right and part of the graph is above the horizontal line 

𝑦 = 1. As 𝑛 is getting bigger, the left part of the curve ℎ(𝑥; 𝑛) is getting closer to the vertical line 𝑥 = 0, the right 

part of the curve is getting closer to the vertical line 𝑥 = 1, and the part of the curve that is above the line 𝑦 = 1 is 

getting closer to this line. Only at infinity, the density function ℎ(𝑥; 𝑛) equals the uniform distribution 𝑈(𝑥; 0, 1). The 

curve ℎ(𝑥; 𝑛) has a bell shape. But due to a lack of symmetry and the heavy right skewness, its median that is very 

sensitive to extremely small or extremely large values, is greater than its mean for 𝑛 > 1. However, the mean and mode 

of ℎ(𝑥; 𝑛) must coincide at one value of the parameter 𝑛. See Proposition 6 below. 

Corollary 2. The cumulative distribution function F(x), expected value E(X), and variance V(X) of the continuous 

random variable X that has the probability density function ℎ(𝑥;  ∞) = 𝑈(𝑥; 0, 1) are the limiting form, in which  

𝑛 → ∞, of the cumulative distribution function 𝐹(𝑋; 𝑛), expected value 𝐸(𝑋; 𝑛), and variance 𝑉(𝑋; 𝑛), respectively, 

of random value X that has the probability density function ℎ(𝑥;  𝑛).  

Proof. lim𝑛→∞ 𝑥
𝑛+1

𝑛 = 𝑥lim𝑛→∞
𝑛+1

𝑛 = 𝑥, 0 < 𝑥 < 1, Then we have 

  𝐹(𝑥) = lim𝑛→∞ 𝐹(𝑥; 𝑛) = lim𝑛→∞  
𝑛+1

𝑛−1
 (

𝑛

𝑛+1
𝑥

𝑛+1

𝑛 −
1

𝑛+1
𝑥𝑛+1) = 1(𝑥 − 0) = 𝑥 , for all 0 < 𝑥 < 1. 

𝐸(𝑋) = lim
𝑛→∞

𝐸(𝑋; 𝑛) = lim
𝑛→∞

 
(𝑛 + 1)2

(2𝑛 + 1)(𝑛 + 2)
=

1

2
 

𝐸(𝑋2) = lim𝑛→∞ 𝐸(𝑋2; 𝑛) = lim𝑛→∞ 
(𝑛+1)2

(3𝑛+1)(𝑛+3)
=

1

3
 , and 

  𝑉(𝑋) = lim𝑛→∞ 𝑉(𝑋; 𝑛) = lim𝑛→∞ 𝐸(𝑋2; 𝑛) − lim𝑛→∞[𝐸(𝑋; 𝑛)]2 =
1

3
− (

1

2
)

2

=
1

12
   by (1)                       

Indeed, 𝐹(𝑥), 𝐸(𝑋), and 𝑉(𝑋) are the cumulative distribution, expected value, and variance, respectively, of the 

random variable X with the probability density function ℎ(𝑥;  ∞) = 𝑈(𝑥; 0, 1).               ∎ 

c. The mode (or modal value) of the standard h-distribution 𝒉(𝒙, 𝒏). 

The value of 𝑥, which maximizes the density function ℎ(𝑥, 𝑛) over its domain, is called the mode or modal value.   

Proposition 3 The mode of the density function ℎ(𝑥, 𝑛) occurs at 𝑥(𝑛) = 𝑛2𝑛/(1−𝑛2) in the interval (0, 1), and the 

maximum height of the same function is  
2𝑛2

𝑛1−𝑛2  (𝑛 + 1)2.   

Proof. For simplicity, let us use, temporarily, the notation ℎ(𝑥) for ℎ(𝑥, 𝑛), which is clearly a continuous function on 

the closed interval [0, 1]. Then  

ℎ′(𝑥) =
𝑛+1

𝑛−1
(

1

𝑛
𝑥

1−𝑛

𝑛 − 𝑛𝑥𝑛−1) = 0, which implies that 

0 = 𝑥
1−𝑛

𝑛 − 𝑛2𝑥𝑛−1 = 𝑥
1−𝑛

𝑛 (1 − 𝑛2𝑥(𝑛2−1)/𝑛). 

Thus, 0  and  𝑛2𝑛/(1−𝑛2) are the critical numbers of ℎ(𝑥). Since ℎ(0) = ℎ(1) = 0, the optimal value of ℎ(𝑥) occurs 

at 𝑥(𝑛) = 𝑛2𝑛/(1−𝑛2) in (0, 1). For 𝑛 > 1, we have 1 − 𝑛2 < 0  and  
2𝑛

1−𝑛2 < 0.  So, the exponential form 𝑛
2𝑛

1−𝑛2 ≠ 0 

must be between 0 and 1. Now,  

ℎ′′(𝑥) =
𝑛 + 1

𝑛 − 1
(

1 − 𝑛

𝑛2
𝑥

1−2𝑛
𝑛 − 𝑛(𝑛 − 1) 𝑥𝑛−2) 

For 𝑛 > 1, the numbers  
1−𝑛

𝑛2   and −𝑛(𝑛 − 1) are both negative, and the number 
𝑛+1

𝑛−1
 is positive. Hence,   

ℎ′′(𝑥) < 0 for all 𝑥 in (0, 1) and for sure  ℎ′′ (𝑛
2𝑛

1−𝑛2) < 0 since 𝑛
2𝑛

1−𝑛2 ∈ (0, 1). Thus, by the second derivative test, 

the density function ℎ(𝑥; 𝑛) reaches its peak at 𝑛2𝑛/(1−𝑛2). So, its mode is 𝑥(𝑛) = 𝑛2𝑛/(1−𝑛2). A routine calculation 
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shows that the maximum height of the curve ℎ(𝑥; 𝑛) is     

ℎ (𝑛
2𝑛

1−𝑛2) =  
2𝑛2

𝑛1−𝑛2  (𝑛 + 1)2                                 ∎ 

To show how this distribution can appear, we show that 𝑥(𝑛) is increasing function of n. Now, 𝑥(𝑛) = 𝑛2𝑛/(1−𝑛2) 

implies that ln 𝑥(𝑛) =
2𝑛 ln 𝑛

1−𝑛2 . To show that 𝑥(𝑛) is increasing function, it is enough to show that ln 𝑥(𝑛) is an 

increasing function because 𝑥(𝑛) is increasing if and only if ln 𝑥(𝑛) is increasing. Note that 

d

dn
(ln 𝑥(𝑛)) =

2(𝑛2 ln 𝑛 + ln 𝑛 + 1 − 𝑛2)

(1 − 𝑛2)2
 

Let 𝑓(𝑛) = 𝑛2 ln 𝑛 + ln 𝑛 + 1 − 𝑛2 . Then 𝑓′(𝑛) = 2𝑛 ln 𝑛 − 𝑛 +
1

𝑛
  and 𝑓′′(𝑛) = 2 ln 𝑛 + 1 −

1

𝑛2 . So 𝑓′′(𝑛) > 0 

for all 𝑛 > 1. Thus 𝑓′(𝑛) is increasing for all 𝑛 ≥ 1. Since 𝑓′(1) = 0, the function 𝑓′(𝑛) > 0  for all 𝑛 > 1. So, 

𝑓(𝑛) is increasing for all 𝑛 ≥ 1. Since 𝑓(1) = 0, the function 𝑓(𝑛) > 0 for all 𝑛 > 1. Thus, 
d

dn
(ln 𝑥(𝑛)) > 0. So, 

ln 𝑥(𝑛) and 𝑥(𝑛) are increasing functions. Let y be the inverse function of 𝑥(𝑛). Therefore, if the mode 𝑥(𝑛) is 

given, then the power 𝑛 can be recovered by 𝑛 = 𝑦(𝑥). 

Lemma 4 The mode 𝑥(𝑛) = 𝑛2𝑛/(1−𝑛2) and mean 𝜇𝑋,𝑛 =
(𝑛+1)2

(2𝑛+1)(𝑛+2)
 of ℎ(𝑥; 𝑛), 𝑛 > 1, are increasing sequences 

that approach 1 and 
1

2
 as 𝑛 → ∞ , respectively. The maximum height  

2𝑛2

𝑛1−𝑛2  (𝑛 + 1)2 of the curve ℎ(𝑥, 𝑛) is a 

decreasing sequence that approaches 1 as 𝑛 → ∞.   

Proof. lim𝑛→∞ 𝑛
2𝑛

1−𝑛2 = 𝑒
lim

𝑛→∞
((2𝑛 ln 𝑛)/(1−𝑛2))

= 𝑒0 = 1 by L’Hospital’s Rule.  It is clear that lim𝑛→∞
(𝑛+1)2

(2𝑛+1)(𝑛+2)
=

1

2
 .               

The chart below shows that the maximum height  
2𝑛2

𝑛1−𝑛2  (𝑛 + 1)2 of the curve ℎ(𝑥, 𝑛) approaches 1 as 𝑛 → ∞, 

which is the maximum height of the density function ℎ(𝑥; ∞) = 𝑈(𝑥; 0, 1).  

n 2 3 4 5 6 15 

  
2𝑛2

𝑛1−𝑛2 (𝑛 + 1)2 1.417411 1.350819 1.298809 1.259259 1.228649 1.110597 

Indeed 1 is the mode and maximum height of the limiting form 𝑈(𝑥; 0, 1) of the standard h-distribution ℎ(𝑥; 𝑛) in 

which 𝑛 → ∞.  

∎ 

Remark 5 Since the mean of the density function ℎ(𝑥, 𝑛) is 𝜇𝑋,𝑛 =
(𝑛+1)2

(2𝑛+1)(𝑛+2)
 , the centroid of the region between 

the curves 𝑥
1

𝑛 and 𝑥𝑛 over the interval [0, 1] is located at the unique point on the line 𝑦 = 𝑥, denoted by 

(�̅�, �̅�) = (
(𝑛+1)2

(2𝑛+1)(𝑛+2)
 ,

(𝑛+1)2

(2𝑛+1)(𝑛+2)
 ), 

which can, also, be calculated using the following integrals 
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�̅� =
1

𝐴
∫ 𝑥 (𝑥

1
𝑛 − 𝑥𝑛) 𝑑𝑥, �̅� =

1

𝐴
∫

1

2
[(𝑥

1
𝑛)

2

− (𝑥𝑛)2]

1

0

  𝑑𝑥   𝑤ℎ𝑒𝑟𝑒 𝐴 = ∫ (𝑥
1
𝑛 − 𝑥𝑛) 𝑑𝑥

1

0

  

1

0

 

The following chart shows how the values of the mode 𝑥(𝑛) and mean 𝜇𝑋,𝑛 behave as 𝑛 is getting bigger. 

The chart also shows that the mode of ℎ(𝑥, 𝑛) is smaller than its mean if 𝑛 = 3 and greater than its mean if 𝑛 = 4.  

Proposition 6 The mode and mean of the density ℎ(𝑥, 𝑛) are the same at one value of 𝑛 inside the interval (3, 4). 

Proof. The mode and the mean of the curve ℎ(𝑥, 𝑛) are characterized by 𝑛. For a real number 𝑛 greater than 1, the 

function 𝑔(𝑛) = 𝑛2𝑛/(1−𝑛2) −
(𝑛+1)2

(2𝑛+1)(𝑛+2)
  is clearly continuous. Since 𝑔(3) < 0 and 𝑔(4) > 0, the Intermediate 

Value Theorem guarantees the existence of a number 𝑛0 in the interval (3, 4) such that 𝑔(𝑛0) = 0. That is, 𝑛0 is the 

number between 𝑛 = 3 and 𝑛 = 4 at which the mode and the mean of the curve ℎ(𝑥, 𝑛) are equal. This means that 

when 𝑛 = 𝑛0, the density function ℎ(𝑥, 𝑛) is approximately a normal distribution. So, the density function ℎ(𝑥, 𝑛) is 

approximately a normal distribution when 𝑛 ∈ [3, 4] 

∎ 

After a sequence of iterations, it was found that   

𝑔(3.54837) = −0.000000351 < 0        and        𝑔(3.54839) = 0.000000305 > 0       

and the number 𝑐 ≈ 3.54838 is in the interval (3.54837, 3.54839) such that 𝑔(3.54838) = −0.000000023 ≈ 0 

That is, at 𝑐 ≈ 3.54838, the mode and the mean of the curve ℎ(𝑥, 𝑛) are equal. 

The mode 𝑥𝑛 = 𝑛2𝑛/(1−𝑛2) and mean 𝜇𝑋,𝑛 =
(𝑛+1)2

(2𝑛+1)(𝑛+2)
  of the density function ℎ(𝑥, 𝑛) depend on 𝑛 > 1. So, 𝑛 

shifts the mode and the mean on the horizontal axis. Since the standard h-distribution ℎ(𝑥, 𝑛) is characterized by   

𝑛 > 1, for each 𝑛, there is a corresponding h-distribution.  

2.2 A General Form of the Standard h-Distribution ℎ(𝑥; 𝑛).   

A probability density function with three parameters 𝐴, 𝐵 and n can be defined for a continuous random variable X, 

by   

ℎ(𝑥; 𝐴, 𝐵, 𝑛) = {
𝑛+1

𝑛−1
(𝐵 − 𝐴)−1 [(

𝑥−𝐴

𝐵−𝐴
)

1/𝑛

− (
𝑥−𝐴

𝐵−𝐴
)

𝑛

] 0 < 𝐴 ≤ 𝑥 ≤ 𝐵 < 1

0 𝑂𝑊
           (8) 

Note that when 𝐴 = 0, and 𝐵 = 1, the function in (8) in nothing but the standard h-distribution ℎ(𝑥; 𝑛). The function 

in (8) can also be written (x replaced by y) as  

                                            ℎ(𝑦; 𝐴, 𝐵, 𝑛) =
1

𝐵 − 𝐴
ℎ (

𝑦 − 𝐴

𝐵 − 𝐴
;  𝑛) ,    0 < 𝐴 ≤ 𝑦 ≤ 𝐵 < 1                                      (9) 

The function (9) is a probability density function on (𝐴, 𝐵) due to the following: 

1.   Since  ℎ(𝑥; 𝑛) ≥ 0, by (8) 

1

𝐵 − 𝐴
 ℎ (

𝑦 − 𝐴

𝐵 − 𝐴
;  𝑛) = ℎ(𝑦; 𝐴, 𝐵, 𝑛) ≥ 0 

n 2 3 4 5 6 20 100 

𝑥(𝑛) = 𝑛2𝑛/(1−𝑛2) 0.396850 0.438691 0.477421 0.511402 0.54101 0.740578 0.912002 

𝜇𝑋,𝑛 =
(𝑛 + 1)2

(2𝑛 + 1)(𝑛 + 2)
 0 .45 0.457143 0.462963 0.467532 0.471154 0.490022 0.497561 
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2.  ∫ ℎ(𝑦; 𝐴, 𝐵, 𝑛)

𝐵

𝐴

𝑑𝑦 = ∫
1

𝐵 − 𝐴
 ℎ (

𝑦 − 𝐴

𝐵 − 𝐴
;  𝑛)

𝐵

𝐴

𝑑𝑦 = ∫
1

𝐵 − 𝐴
 ℎ(𝑥;  𝑛)

1

0

(𝐵 − 𝐴) 𝑑𝑥 = ∫ ℎ(𝑥; 𝑛)
1

0

𝑑𝑥 = 1,  

using (9) and the substitution 𝑥 =
𝑦 − 𝐴

𝐵 − 𝐴
                  

3.  𝑃(𝑎 < 𝑥 < 𝑏) = ∫ ℎ(𝑥; 𝐴, 𝐵, 𝑛)𝑑𝑥.

𝑏

𝑎

    

Back to a surgery performed on somebody. The initial wound will be on the surface of the body followed by a smaller 

one on an interior organ inside the body at which the main operation is taking place. That is how the numbers A and B 

came to the picture. 

a. The cumulative distribution of the random variable X with the probability density function 𝒉(𝒙; 𝑨, 𝑩, 𝒏). 

Using the substitution 𝑥 = (𝑦 − 𝐴)/(𝐵 − 𝐴) and equation (9), we have 

𝐹(𝑦; 𝐴, 𝐵, 𝑛) = 𝑃(𝑌 ≤ 𝑦) = ∫ ℎ(𝑦; 𝐴, 𝐵, 𝑛) 𝑑𝑦 = ∫
1

𝐵 − 𝐴
 ℎ (

𝑡 − 𝐴

𝐵 − 𝐴
;  𝑛) 𝑑𝑡 = ∫

1

𝐵 − 𝐴
 ℎ(𝑥;  𝑛)

𝑦−𝐴
𝐵−𝐴

0

(𝐵 − 𝐴)𝑑𝑥 
𝑦

𝐴

𝑦

−∞

 

= 𝐹 (
𝑌 − 𝐴

𝐵 − 𝐴
,   𝑛)                                                                                      

                                               =
1

𝑛 − 1
(

𝑦 − 𝐴

𝐵 − 𝐴
) [𝑛 (

𝑦 − 𝐴

𝐵 − 𝐴
)

1
𝑛

− (
𝑦 − 𝐴

𝐵 − 𝐴
)

𝑛

] , 0 < 𝐴 < 𝑥 < 𝐵 < 1      𝑏𝑦 (4)               (10) 

b. The expected value 𝑬(𝑿; 𝑨, 𝑩, 𝒏) and variance 𝑽(𝑿; 𝑨, 𝑩, 𝒏) of the random variable X with the probability 

density function 𝒉(𝒙; 𝑨, 𝑩, 𝒏).  

Again, using the equation (9) and the substitution 𝑥 = (𝑦 − 𝐴)/(𝐵 − 𝐴), we have 

𝐸(𝐾(𝑌); 𝐴, 𝐵, 𝑛) = ∫  𝐾(𝑦) ℎ(𝑦; 𝐴, 𝐵, 𝑛) 𝑑𝑦

∞

−∞

= ∫ 𝐾(𝑦)
1

𝐵 − 𝐴
 ℎ (

𝑦 − 𝐴

𝐵 − 𝐴
;  𝑛)

𝐵

𝐴

𝑑𝑦                                       

                                                                             = ∫ 𝐾((𝐵 − 𝐴)𝑥 + 𝐴) ∙
1

𝐵 − 𝐴
ℎ(𝑥;  𝑛) (𝐵 − 𝐴) 𝑑𝑥

1

0

 

                                                                                               = ∫ 𝐾((𝐵 − 𝐴)𝑥 + 𝐴) ℎ(𝑥;   𝑛)
1

0

 𝑑𝑥                                            (𝑖) 

If 𝐾(𝑌) = 𝑌, then by (i)   

𝐸(𝑌; 𝐴, 𝐵, 𝑛) = ∫ ((𝐵 − 𝐴)𝑥 + 𝐴) ℎ(𝑥;   𝑛)
1

0

𝑑𝑥 = (𝐵 − 𝐴) ∫ 𝑥 ℎ(𝑥;   𝑛)
1

0

 𝑑𝑥 + 𝐴 ∫ ℎ(𝑥;   𝑛) 𝑑𝑥
1

0

 

                  = (𝐵 − 𝐴) 𝐸(𝑋;  𝑛)  + 𝐴 =  
(𝐵−𝐴)(𝑛 + 1)2

(2𝑛 + 1)(𝑛 + 2)
+ 𝐴   (11) 

If 𝐾(𝑌) = 𝑌2, then by (i)  

𝐸(𝑌2; 𝐴, 𝐵, 𝑛) = ∫ 𝑦2 ℎ(𝑥; 𝐴, 𝐵, 𝑛) 𝑑𝑥

𝐵

𝐴

= ∫[(𝐵 − 𝐴)𝑥 + 𝐴]2

1

0

ℎ(𝑥;   𝑛) 𝑑𝑥     

= ∫[(𝐵 − 𝐴)2𝑥2 + 2(𝐵 − 𝐴) 𝐴 𝑥 + 𝐴2]

1

0

ℎ(𝑥;   𝑛) 𝑑𝑥      
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                              = (𝐵 − 𝐴)2 ∫ 𝑥2ℎ(𝑥;   𝑛)

1

0

𝑑𝑥 +  2(𝐵 − 𝐴) 𝐴 ∫ 𝑥 ℎ(𝑥;   𝑛)

1

0

𝑑𝑥 + 𝐴2 ∫ ℎ(𝑥;   𝑛) 𝑑𝑥

1

0

   

                                      =   (𝐵 − 𝐴)2𝐸(𝑋2;  𝑛) + 2𝐴(𝐵 − 𝐴) 𝐸(𝑋;   𝑛) + 𝐴2                                                     (ii) 

So, the variance of X with the probability density function ℎ(𝑥; 𝐴, 𝐵, 𝑛) is     

𝑉(𝑌; 𝐴, 𝐵, 𝑛)  = 𝐸(𝑌2; 𝐴, 𝐵, 𝑛) − [𝐸(𝑌; 𝐴, 𝐵, 𝑛)]2 

               = (𝐵 − 𝐴)2 𝐸(𝑋2;  𝑛) + 2𝐴(𝐵 − 𝐴) 𝐸(𝑋;  𝑛) + 𝐴2 − [(𝐵 − 𝐴) 𝐸(𝑋;  𝑛)  + 𝐴 ]2  𝑏𝑦 (𝑖𝑖)  𝑎𝑛𝑑 (10)  

= (𝐵 − 𝐴)2𝐸(𝑋2;  𝑛) + 2𝐴(𝐵 − 𝐴) 𝐸(𝑋;  𝑛) + 𝐴2 − (𝐵 − 𝐴)2[ 𝐸(𝑋;  𝑛)]2 −  2𝐴(𝐵 − 𝐴) 𝐸(𝑋;  𝑛) − 𝐴2 

= (𝐵 − 𝐴)2 [𝐸(𝑋2;  𝑛) − [ 𝐸(𝑋;  𝑛)]2] = (𝐵 − 𝐴)2 𝑉(𝑋; 𝑛)                                                               

                = (𝐵 − 𝐴)2 [
(𝑛 + 1)2(n4 +  4n3  +  7n2  +  4n +  1)

(3n + 1)(n + 3)(2n + 1)2(n + 2)2
]        𝑏𝑦 (7)                                  (12) 

Theorem 7 The sequence of curves ℎ(𝑥; 𝐴, 𝐵, 𝑛), for all x in (0, 1), converges pointwise to the uniform distribution 

𝑈(𝑥; 𝐴, 𝐵, 𝑛) on the interval [A, B], 0 < 𝐴 < 𝑥 < 𝐵 < 1.  

Proof. lim𝑛→∞
𝑛+1

𝑛−1
= 1, 𝑒lim𝑛→∞

1

𝑛
 ln(

𝑥−𝐴

𝐵−𝐴
) = 𝑒0 = 1, and lim𝑛→∞ (

𝑥−𝐴

𝐵−𝐴
)

𝑛

= 0 because 0 < (𝐵 − 𝐴) < 1. Then   

 lim𝑛→∞ ℎ(𝑥; 𝐴, 𝐵, 𝑛) = lim𝑛→∞
𝑛+1

𝑛−1
(𝐵 − 𝐴)−1 [(

𝑥−𝐴

𝐵−𝐴
)

1/𝑛

− (
𝑥−𝐴

𝐵−𝐴
)

𝑛

] = (𝐵 − 𝐴)−1(1 − 0) = 1/(𝐵 − 𝐴)   

which is indeed the uniform distribution 𝑈(𝑥; 𝐴, 𝐵 ) of the random variable 𝑋 on the interval [A, B].  

         ∎ 

Figure 2.1 below shows how the sequence of curves ℎ(𝑥; 𝐴, 𝐵, 𝑛) with 𝐴 = 0.1 and 𝐵 = .09 approaches the curve 

of the uniform distribution 𝑈(𝑥; 0.1, 0.9) as n approaches infinity.          

 

Figure 2.1. ℎ(𝑥;  0.1, 0.9, 𝑛) 

We have 𝐵 − 𝐴 = 0.8 and (𝐵 − 𝐴)−1 =
1

0.8
= 1.25. For each 𝑛, the curve ℎ(𝑥; 0.1, 0.9, 𝑛) is positively skewed, and 

part of it is located above the line 𝑦 = 1.25. As 𝑛 → ∞, the right part of the curve coincides with the line 𝑥 = 0.9, the 

left part of the curve coincides with the line 𝑥 = 0.1, and the part above the line 𝑦 = 1.25 coincides with this line. So, 

the uniform density U(x; A, B) is the limiting form of the density function ℎ(𝑥; 𝐴, 𝐵, 𝑛) in which 𝑛 → ∞.    

Corollary 8 The cumulative distribution function F(x), expected value E(X), and variance V(X) of random variable 

X with uniform distribution 𝑈(𝑥; 𝐴, 𝐵), are the limiting form, in which 𝑛 → ∞,  of the cumulative distribution  

function F(X; A, B, n), expected value E(X; A, B, n), and variance V(X; A, B, n) of the random variable X with the 
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probability density function h(x; A, B, n), respectively.        

Proof. Since lim𝑛→∞
𝑛

𝑛−1
= 1, lim𝑛→∞

𝑛+1

𝑛
= 1, and lim𝑛→∞

1

𝑛−1
= 0, 

𝐹(𝑥) = lim𝑛→∞ 𝐹(𝑥; 𝐴, 𝐵, 𝑛) = lim𝑛→∞[
𝑛

𝑛−1
 (

𝑥−𝐴

𝐵−𝐴
)

(𝑛+1)/𝑛

− 
1

𝑛−1
 (

𝑥−𝐴

𝐵−𝐴
)

𝑛+1

] =
𝑥−𝐴

𝐵−𝐴
 ; 

𝐸(𝑋) = lim𝑛→∞ 𝐸(𝑋; 𝐴, 𝐵, 𝑛) = lim𝑛→∞ [
(𝑛+1)2(𝐵−𝐴)

(2𝑛+1)(𝑛+1)
+ 𝐴 ] =

1

2
(𝐵 − 𝐴) + 𝐴 =

1

2
(𝐴 + 𝐵); 

𝑉(𝑋) = lim𝑛→∞ 𝑉(𝑋; 𝐴, 𝐵, 𝑛) = lim𝑛→∞ [(𝐵 − 𝐴)2 [
(𝑛+1)2(𝑛4+4𝑛3−𝑛2−4𝑛−1)

(3𝑛+1)(𝑛+3)(2𝑛+1)2(𝑛+2)2]] = (𝐵 − 𝐴)2/12. 

Indeed, 𝐹(𝑥), 𝐸(𝑋), and 𝑉(𝑋) are the cumulative distribution function, expected value, and variance, of the random 

variable X with the uniform distribution 𝑈(𝑥; 𝐴, 𝐵), respectively.                ∎ 

3. Conclusion 

The density function ℎ(𝑥; 𝐴, 𝐵, 𝑛) that is constructed in this paper, is a generalization of the well-known uniform 

distributions 𝑈(𝑥; 𝐴, 𝐵), 𝑤ℎ𝑒𝑟𝑒 0 < 𝐴 < 𝑥 < 𝐵 < 1. It has applications in several physical phenomena including the 

medical field, minerals industry, and technology. When the parameter 𝑛, on its way up, fall in the closed interval [3 ,4], 
the density ℎ(𝑥; 𝐴, 𝐵, 𝑛) is approximated by the normal distribution. So, the density ℎ(𝑥; 𝐴, 𝐵, 𝑛) is a good addition to 

those densities that may be approximated by the normal distribution under certain conditions such as the binomial, the 

hypergeometric, the Poisson, and the gamma. But only when 𝑛 → ∞ will the distribution ℎ(𝑥; 𝐴, 𝐵, 𝑛) equals the 

uniform distribution U(x; A, B) , where 0 < 𝐴 < 𝑥 < 𝐵 < 1 . Thus, the uniform curve 𝑈(𝑥; 𝐴, 𝐵)  is the curve 

ℎ(𝑥; 𝐴, 𝐵, 𝑛)  with 𝑛  equals ∞ . If the mode 𝑥(𝑛) = 𝑛2𝑛/(1−𝑛2) of ℎ(𝑥; 𝑛)  is given, then the power 𝑛  can be 

recovered and the distribution ℎ(𝑥; 𝑛) can appear. The discussion of properties of the standard h-distribution ℎ(𝑥; 𝑛) 

is as follows. 

1. For each 𝑛 ∈ (1, ∞), the curve ℎ(𝑥; 𝑛) is of bell shape over the interval (0, 1) but not always symmetric.  

2. There are infinitely many standard h-distributions ℎ(𝑥; 𝑛), one for every value of the parameter 𝑛. 

3. For each 𝑛 > 1, the curve ℎ(𝑥; 𝑛) has two parts: one above the line 𝑦 =  1, and the other below the same line.  

4. As 𝑛 → ∞, the sequence of curves ℎ(𝑥;  𝑛) approaches the uniform distribution curve 𝑈(𝑥;  0, 1). 

5. The density function ℎ(𝑥, 𝑛) and its mode, mean, and maximum height, are characterized by the parameter n. 

6. Its mode 𝑥(𝑛) = 𝑛2𝑛/(1−𝑛2)is an increasing sequence that converges to 1, which is the mode of 𝑈(𝑥; 0, 1). 

7. Its mean 𝜇𝑋,𝑛 =
(𝑛+1)2

(2𝑛+1)(𝑛+2)
 is an increasing sequence that converges to  

1

2
, which is the mean of 𝑈(𝑥; 0, 1).  

8. The curve ℎ(𝑥; 𝑛) peaks at only one value 𝑛0 of the parameter 𝑛 that is inside the open interval (3, 4). 

9. If 𝑛 <  𝑛0 , the mode of ℎ(𝑥; 𝑛) is smaller than its mean. If 𝑛 > 𝑛0, its mode is greater than its mean. 

10. For 𝑛 ∈ [3, 4], its mode 𝑥(𝑛) and mean 𝜇𝑋,𝑛 are very close to each other. That is, ℎ(𝑥;  𝑛) is very close to the 

normal distribution.   
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