Bayesian Bivariate Cure Rate Models Using Copula Functions
- Jie Huang
- Haiming Zhou
- Nader Ebrahimi
Abstract
Bivariate survival cure rate models extend the understanding of time-to-event data by allowing for a cured fraction of the population and dependence between paired units and make more accurate and informative conclusions. In this paper, we propose a Bayesian bivariate cure rate mode where a correlation coefficient is used for the association between bivariate cure rate fractions and a new generalized Farlie Gumbel Morgenstern (FGM) copula function is applied to model the dependence structure of bivariate survival times. For each marginal survival time, we apply a Weibull distribution, a log normal distribution, and a flexible three-parameter generalized extreme value (GEV) distribution to compare their performance. For the survival model fitting, DIC and LPML are used for model comparison. We perform a goodness-of-fit test for the new copula. Finally, we illustrate the performance of the proposed methods in simulated data and real data via Bayesian paradigm.
- Full Text: PDF
- DOI:10.5539/ijsp.v11n3p9
Index
- ACNP
- Aerospace Database
- BASE (Bielefeld Academic Search Engine)
- CNKI Scholar
- COPAC
- DTU Library
- Elektronische Zeitschriftenbibliothek (EZB)
- EuroPub Database
- Excellence in Research for Australia (ERA)
- Google Scholar
- Harvard Library
- Infotrieve
- JournalTOCs
- LOCKSS
- MIAR
- Mir@bel
- PKP Open Archives Harvester
- Publons
- ResearchGate
- SHERPA/RoMEO
- Standard Periodical Directory
- Technische Informationsbibliothek (TIB)
- UCR Library
- WorldCat
Contact
- Wendy SmithEditorial Assistant
- ijsp@ccsenet.org