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Abstract

Bivariate survival cure rate models extend the understanding of time-to-event data by allowing for a cured fraction of the
population and dependence between paired units and make more accurate and informative conclusions. In this paper, we
propose a Bayesian bivariate cure rate mode where a correlation coefficient is used for the association between bivariate
cure rate fractions and a new generalized Farlie Gumbel Morgenstern (FGM) copula function is applied to model the
dependence structure of bivariate survival times. For each marginal survival time, we apply a Weibull distribution, a
log normal distribution, and a flexible three-parameter generalized extreme value (GEV) distribution to compare their
performance. For the survival model fitting, DIC and LPML are used for model comparison. We perform a goodness-of-
fit test for the new copula. Finally, we illustrate the performance of the proposed methods in simulated data and real data
via Bayesian paradigm.
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1. Introduction

In survival analysis, it is of primary interest to measure the association between two time-to-event random variables
associated with one individual. In many cases, the lifetime of paired unites from same individual would affect each
other. For instance, visual loss for one eye could affect another eye for the same patient. Another case in cancer study, for
example, a fraction of patents may response positively to the treatment. On the other word, this fraction of patients will not
experience death within the follow-up period, and they have long term survival times. In the literature, frailty models with
a single shared frailty were popular. They account for unobserved heterogeneity by including random effect. The main
feature of the shared frailty models is all units share the same frailty. Because of this limitation, they have been extended
to model data with more complex dependence relations. Yashin and Iachine (1999) involved correlated stochastic hazard
in a given frailty of survival distribution. Peng and Taylor (2011) applied different random effects to model the correlations
for cure patients and uncured patients, respectively. Gallardo, Gómez, and de Castro (2018) proposed a cure rate model
and applied the competing risks approach to the latent causes of the event of interest.

An alternative is the use of copula functions. Unlike the frailty approaches, the copula approach models the joint distribu-
tion by connecting the two marginal distributions through a copula function. Modelling dependence is one of the primary
interests in multivariate analysis. The advantages of the copula are as follows. First, the copula models the marginal
distributions and the dependence parameters separately which allows flexibility in marginal models and straightforward
construction of covariate effects. Secondly, the copula can handle the censoring through the marginal distributions. Third-
ly, the conditional distributions can be obtained through the copula model. Romeo, Tanaka, and Pedroso-de Lima (2006)
introduced the Archimedian copula family for modeling the dependence of bivariate lifetime components where a Weibull
distribution is considered as the marginal distribution. Louzada, Suzuki, and Cancho (2013) proposed an FGM long-term
bivariate survival copula model. They assumed a mixture cure rate model for the marginal distribution of each lifetime
and assumed fixed cure fraction for the entire population. C.-M. Chen, Lu, and Hsu (2013) applied the pairwise odds
ratio to the association of the insusceptibility of the individuals and adopted Clayton copula to measure the association
of susceptible individuals with a semiparametric distribution as marginal regression model. Lakhal-Chaieb and Duch-
esne (2017) introduced a link function to relax subject-specific-effect assumption which improves the range of potential
association and add flexibility to dependence structure.

The literature has introduced many other modelling approaches for bivariate long term data using copula functions, as
for example the paper introduced by Louzada et al. (2013). But in that paper, the authors only present more simple cure
fraction survival model situation assuming dependence with a FGM copula function structure. In this paper, a mixture
model is applied to analyze a bivariate censored data with different susceptibilities. A correlation coefficient is applied for
cure rates and a generalized bivariate Farlie Gumbel Morgenstern (FGM) copula, proposed by Bekrizadeh and Jamshidi
(2017), is applied for the association of bivariate failure times. As studied in Louzada et al. (2013), it showed a weak
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dependence between tow lifetimes in the diabetic retinopathy study data. The FGM commonly used to model very weak
linear dependences and give more reliable estimates. One of the advantages of the generalized FGM copula has wider
range of correlation compared to regular FGM copula. According to Bekrizadeh and Jamshidi (2017), the estimated
correlations based on the generalized FGM copula is closer to the actual correlation of the observed data compared to
FGM copula. This conclusion is also shown in diabetic retinopathy study data. Also, the Spearmans ρ of two lifetimes in
the diabetic retinopathy study data is 0.376 which is greater than the upper bound of ρ for the FGM copula. Whereas the
generalized FGM copula has one more parameter with upper bound of ρ up to 0.385. In Bayesian analysis of proposed
model, we perform standard MCMC method in consideration of cure fractions and censoring for both lifetimes. We
employ the flexible three-parameter generalized extreme value (GEV) distribution on the marginal survival time. We also
apply Weibull distribution and log normal distribution for model comparison.

Misspecifying the copula model may have impact on the inference procedure. Therefore, it may be necessary for our
proposed methodology to use a goodness-of-fit test for adequacy check. In the literature, specification tests have been
extensively investigated such as rank based test as in Wang and Wells (2000), kernels as in Fermanian (2005), and blanket
tests. Genest, Rémillard, and Beaudoin (2009) show that all of blank tests have no power in differentiating some copulas
such as Gaussian copula and Student’s t copula. Also, it’s difficult for deriving analytically in the test statistics of Student’s
t copula and vine copula since blank tests require certain probability integral transformation. S. Zhang, Okhrin, Zhou, and
Song (2016) propose an alternative specification test for semi-parametric copulas which does not require any probability
integral transformation. The proposed test is referred to as pseudo-in-and-out-sample test (PIOS) which takes a form of
ratio constructed via in sample pseudo-likelihood and out of sample pseudo-likelihood.

Compared to the POIS test proposed by S. Zhang et al. (2016), our work makes the following new contributions. First of
all, the test is extended to be applicable to a parametric copula model of right-censored survival times. Secondly, the test
is extended to the case of mixture cure rate model for individual survival function. Finally, we discuss how to identify the
susceptible subjects in the mixture cure rate model in order to produce a PIOS test statistic.

2. The Model

Suppose two lifetimes T1 and T2 associated to the same subject. Let dk be an indicator variable showing a subject is
susceptible to the kth event and a corresponding cure probability is Pk = Pr(dk = 0), k = 1, 2. We assume mixture models
for T1 and T2, given, respectively, by

S 1(t1) = Pr(T1 > t1) = P1 + (1 − P1)S 10(t1)
S 2(t2) = Pr(T2 > t2) = P2 + (1 − P2)S 01(t2),

where S 10(t1) = Pr(T1 > t1|d1 = 1) and S 01(t2) = Pr(T2 > t2|d2 = 1) are survival functions associated with T1 and T2
when the subject is susceptible for the underlying event.

The joint survival function for T1 and T2 is given by

S (t1, t2) =
∑
d1,d2

S (t1, t2|d1, d2)Pr(d1, d2). (1)

where S (t1, t2|d1 = 1, d2 = 1), for example, is the joint survival function of T1 and T2 for the susceptible individuals.

Assuming that covariance between d1 and d2 is ρ, we have

Pr(d1 = 1, d2 = 1) = (1 − P1)(1 − P2) + ρ , ϕ11, (2)

Pr(d1 = 1, d2 = 0) = (1 − P1)P2 − ρ , ϕ10, (3)

Pr(d1 = 0, d2 = 1) = (1 − P2)P1 − ρ , ϕ01, (4)

Pr(d1 = 0, d2 = 0) = P1P2 + ρ , ϕ00. (5)

Now, using (1) - (5) we get

S (t1, t2) = ϕ11S (t1, t2|d1 = 1, d2 = 1) + ϕ10S 10(t1) + ϕ01S 01(t2) + ϕ00,

where S (t1, t2|d1 = 1, d2 = 1), S 10 and S 01 are defined as above. Now one possibility is to use different parametric
distributions for S (t1, t2|d1 = 1, d2 = 1). Another possibility is to use copula functions which link marginal distributions
with a joint distribution. Throughout this paper, we use copula functions for joint survival of susceptible individuals.
Thus, the joint survival function for T1 and T2 can be written as,

S (t1, t2) = ϕ00 + ϕ10S 10(t1) + ϕ01S 01(t2) + ϕ11C(S 10(t1), S 01(t2)), (6)

where C(·, ·) is a bivariate copula function.
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2.1 Distributional Assumptions on S 01(·) and S 10(·)

Let {S γ(·)} denote a parametric family of survival functions with support on R+, where γ is a vector of parameters. In this
paper, we consider three families: Weibull, log normal and log generalized extreme value (GEV). The Weibull distribution
has survival function

S γ(t) = exp
[
−

( t
µ

)λ]
, where γ = (µ, λ) ∈ R+ × R+. (7)

The log normal has survival function

S γ(t) = 1 − Φ

(
log t − µ

σ

)
, where γ = (µ, σ) ∈ R × R+. (8)

The log GEV has survival function

S γ(t) =

1 − exp
{
−

(
1 + ξ

log t−µ
σ

)− 1
ξ

+

}
if ξ , 0

1 − exp
{
− exp

(
−

log t−µ
σ

)}
if ξ = 0,

(9)

where γ = (µ, σ, ξ) ∈ R × R+ × R and x+ = max(0, x). Now, given each of the above distribution families, we assume
S 01(t1) = S γ1 (t1) and S 10(t2) = S γ2 (t2).

The Weibull distribution can produce only monotonic hazard rates. In contrast, the shape of the hazard function for a
logGEV is various such as U-shaped, or bell shaped, or a combination of both.

2.2 A Generalized FGM Bivariate Copula

In this paper, we use the generalized class of Farlie-Gumbel-Morgenstern (FGM) copula proposed by Bekrizadeh and
Jamshidi (2017) which is given by

Cp
θ (s, t) = st[1 + θ(1 − s)(1 − t)]p, p ∈ [1,∞], θ ∈ [−p−1, p−1], ∀(s, t) ∈ [0, 1]2. (10)

When p = 1, it reduces to the symmetric FGM copula. The Spearman’s ρ can be written as ρ = 12
∑p

k=1

(
p
k

)
θk

[
1

(k+1)(k+2)

]2
,

where the upper bound of ρ is up to 0.3805 approximately, and the lower bound is equal to −0.3333 which is same as that
of symmetric FGM. Thus, the range of ρ in this generalized FGM is [−0.3333, 0.3805]. A good example is when p = 3,
θ = 0.33 < 1

3 , the estimated Spearmans ρ, ρ ≈ 0.3583, which is out of the range of Spearmans ρ for FGM copula, that

is [−1/3, 1/3]. The Kendall’s τ can be written as τ = 4
∫ 1

0

∫ 1
0 c(s, t)C(s, t)dsdt − 1. The estimated Kendals τ ≈ 0.2397

which is out of the range of τ for FGM copula, that is [−2/9, 2/9]. As we can see that the generalized FGM improve the
correlation range which can be applied for more data. Also, the Spearmans ρ increases as p increases and θ is fixed. And
Spearmans ρ increases as θ increases and p is fixed. As discussed in Bekrizadeh and Jamshidi (2017), if true correlation
is within the range of FGM, the estimated correlations based on the generalized FGM copula showed strong consistency
and was closer to the correlations which come from the observed data compared to the regular FGM copula.

2.3 Likelihood and MCMC

Denote (Ti1,Ti2) and (Ci1,Ci2) as bivariate lifetimes and corresponding censored bivariate times, respectively, for i =

1, · · · , n. For each individual i, observed time can be denoted as ti j = min(Ti j,Ci j) by assuming (Ti1,Ti2) and (Ci1,Ci2)
are independent. Denote δi j = I(ti j = Ti j) as a censoring indicator, j = 1, 2.

Let θ = (γ1,γ2,ϕ, θ, p) denote the set of model parameters, where ϕ = (ϕ00, ϕ10, ϕ01, ϕ11), and γ1 and γ2 are parameters
for S 01(·) and S 10(·) respectively. Considering the joint survival function, S (ti1, ti2), given by the equation (6) with the
copula function given by the equation (10), the log-likelihood of i-th individual is given by

li(θ) = δi1δi2 log f (ti1, ti2) + δi1(1 − δi2) log
(
−
∂S (ti1, ti2)

∂ti1

)
+ δi2(1 − δi1) log

(
−
∂S (ti1, ti2)

∂ti2

)
+ (1 − δi1)(1 − δi2) log S (ti1, ti2), (11)
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where

f (ti1, ti2) =
∂2S (ti1, ti2)
∂ti1∂ti2

=ϕ11 f1 f2[1 + θF1F2]p−2
{
(1 + θF1F2)[1 + θF1(F2 − pS 2)]

+ θpS 1[(1 − 2F2)(1 + θF1F2) + θ(p − 1)F1F2(1 − F2)]
}
,

−
∂S (ti1, ti2)

∂ti1
= f1

{
ϕ10 + ϕ11S 2(1 + θF1F2)p−1[1 + θF2(F1 − pS 1)]

}
,

−
∂S (ti1, ti2)

∂ti2
= f2

{
ϕ01 + ϕ11S 1(1 + θF1F2)p−1[1 + θF1(F2 − pS 2)]

}
, and

S (ti1, ti2) = ϕ00 + ϕ10S 1 + ϕ01S 2 + ϕ11S 1S 2(1 + θF1F2)p.

Here S 1 = S 10(ti1), S 2 = S 01(ti2), F1 = 1 − S 10(ti1), F2 = 1 − S 01(ti2), f1 = −∂S 10(ti1)/∂ti1 and f2 = −∂S 10(ti2)/∂ti2. Then
the likelihood function of θ for entire population is given by

L(θ) = exp
( n∑

i=1

li(θ)
)
. (12)

We assume independent priors on the model parameters as

π(γ1,γ2,ϕ, θ, p) = π(γ1)π(γ2)π(ϕ)π(θ)π(p), (13)

where a Dirichlet prior for ϕ set
= (ϕ1, ϕ2, ϕ3, ϕ4) with hyperparameter value w1 = w2 = w3 = w4 is

π(ϕ) =
Γ
(∑4

i=1 wi
)∏4

i=1 Γ(wi)

4∏
i=1

ϕwi−1
i . (14)

Also a Beta(aθ, bθ) distribution is assigned to 1
2 (1 − θ) and an inverse gamma distribution IG(ap, bp) is assigned to p − 1.

Therefore, the joint posterior distribution can be written as

π(γ1,γ2,ϕ, θ, p|{ti j}) ∝ L(γ1,γ2,ϕ, θ, p) × π(γ1)π(γ2)π(ϕ)π(θ)π(p).

In order to guarantee proper posteriors, we adopt proper priors with known hyper-parameters. Thus, the following
prior distributions are assigned to parameters of marginal distributions (1) for the log GEV distribution, we assume
π(γ1)π(γ2) = π(µ1)π(σ1)π(ξ1)π(µ2)π(σ2)π(ξ2), where µ1, µ2 ∼ N(0, σ2

µ j
), σ1, σ2 ∼ IG(aσ j , bσ j ) and ξ1, ξ2 ∼ N(0, σ2

ξ j
);

(2) for the Weibull distribution, we assume π(γ1)π(γ2) = π(µ1)π(µ2)π(λ1)pi(λ2), where µ j ∼ Gamma(aµ j , bµ j ) and
λ j ∼ Gamma(aλ j , bλ j ), j = 1, 2.; (3) for the log normal distribution, we assume π(γ1)π(γ2) = π(µ1)π(σ1)π(µ2)π(σ2),
where µ1, µ2 ∼ N(0, σ2

µ j
) and σ1, σ2 ∼ IG(aσ j , bσ j ).

Since its integration is not easy to perform, we use MCMC techniques to construct sample chains which are progressively
more likely realizations of the distribution of the target distribution. Specifically, we simulate samples of parameters via
Metropolis-Hastings (HM) steps within the Gibbs sampler. More details on the algorithm can be found in Web Appendix
A

2.4 Model Comparison Criteria

To set notation, letD,Di andD−i be the observed dataset, the ith data point, and the dataset withDi removed, respectively,
i = 1, . . . , n. Let L(D|θ) be the likelihood function based on observed data D, and Li(·|θ) be the likelihood contribution
based on Di where θ is the entire collection of model parameters under a particular model. Suppose {θ(1), . . . , θ(L)} are
random samples drawn from the full posterior ppost(θ|D) and θ̂ =

∑L
l=1 θ

(l)/L is the posterior mean estimate for θ.

Several model comparison methods are proposed in the literature. In the paper we will consider the following criteria.

(1) The deviance information criterion (DIC), a generalization of the Akaike information criterion (AIC), is common-
ly used for comparing complex hierarchical models for which the asymptotic justification of AIC is not appropriate
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(Burnham & Anderson, 2004; Vaida & Blanchard, 2005). This criterion can be incorporated during the Monte Carlo
simulation. Lower values of DIC indicate better adjustment. The expression of DIC can be written as

DIC = −2 log L(D|θ̂) + 2pD, (15)

where

pD = 2

log L(D|θ̂) −
1
L

L∑
l=1

log L(D|θ(l))

 .
(2) The conditional predictive ordinate (CPO) method represents a posterior predictive approach that has proven useful
in Bayesian model selection Box (1980); M.-H. Chen, Ibrahim, and Sinha (2002); Gelfand and Dey (1994). CPO
provides a useful cross-validation approach that is computationally efficient, requiring only a sample from the posterior
distribution. Larger values for the CPOi imply better models and lower values indicate influential observations. The
conditional predictive ordinate (CPO) statistic for data pointDi is given by

CPOi = f (Di|D−i) =

∫
Li(Di|θ)ppost(θ|D−i)dθ,

where ppost(·|D−i) is the posterior density of θ give D−i. As noted by (Gelfand & Dey, 1994), one can use importance
sampling to estimate CPOi by

ĈPOi =

 1
L

L∑
l=1

1
Li(Di|θ(l))


−1

. (16)

The LPML can be written in terms of CPO as

LPML =

n∑
i=1

log ĈPOi. (17)

3. Goodness of Fit Test

In this section, we are going to extend the pseudo in-and-out-of-sample test so called PIOS test proposed by J. Zhang
and Peng (2007), which perform a goodness-of-fit on the hypotheses given that the marginal distribution for susceptible
subjects are fully specified. The hypotheses are stated as below.

H0 : C0 ∈ C =
{
C(·; θ) : θ ∈ Θ|F01(t1); F10(t2)}

vs

H1 : C0 < C =
{
C(·; θ) : θ ∈ Θ|F01(t1); F10(t2)},

where C0(·) is the true copula function, Θ ⊂ <2 is a 2-dimensional parameter space, and F01(t1), F10(t2) are the CDF for
the susceptible individuals in the lifetimes T1 and T2, respectively.

To derive the goodness-of-fit test statistic, two-step estimation technique was applied. According to Shih and Louis (1995),
the first step is to estimate parameters P j, γ j and ϕ by maximizing the marginal likelihood function

∑n
i=1

[
δi j log f j(ti j) +

(1 − δi j) log S j(ti j)
]
, where f j(t) = −∂S j(t)/∂t, and denote the estimates as P̂ j, γ̂ j and ϕ̂. The second step is to obtain a

pseudo maximum likelihood estimates (PMLE) of (θ, p) by maximizing
∑n

i=1 li(γ̂1, γ̂2, ϕ̂, θ, p), and denote the estimates by
θ̂ and p̂. The PMLE (θ̂, p̂) in ”in-sample” pseudo log likelihood is obtained using the full data. And the PMLE (θ̂(−i), p̂(−i))
in ”out-sample” pseudo log likelihood is obtained using the subset of data with ith observation removed. Then test statistic
can be written as

Tn = l̂in − l̂out =

n∑
i=1

li(γ̂1, γ̂2, ϕ̂, θ̂, p̂) −
n∑

i=1

li(γ̂1, γ̂2, ϕ̂, θ̂(−i), p̂(−i)), (18)

where the log-likelihood function of ith data can be written as

l(γ1,γ2,ϕ, θ, p; Di) = δi1δi2 log f (ti1, ti2) + (1 − δi1)δi2 log
{
−
∂S (ti1, ti2)

∂ti2

}
+ (1 − δi2)δi1 log

{
−
∂S (ti1, ti2)

∂ti1

}
. (19)
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There are several good properties regarding to this test statistic. First, Tn in Equation (18) converges in probability to
the dimension of the parameter vector of the copula under the null hypothesis. Secondly, Tn is asymptotically subject to
normal distribution under null hypothesis. The proofs can be found in J. Zhang and Peng (2007).

Instead of estimating the asymptotic variance analytically, we use the following bootstrap technique to approximates the
asymptotic variance of the test statistic in finite samples.

1: Calculate test statistic Tn for the bivariate survival times using the original n pairs of observations.

2: Sample with replacement with size n.

3: Calculate the test statistic, denoted as T (b)
n , using the sampled data from step 2.

4: Repeat 2 and 3 B times so have B test statistics, denoted as Tn, T B
n =

{
T (b)

n , b = 1, · · · , B
}
. Calculate the standard

deviation, sd
{
T B

n
}
. Finally, calculate the p-value which is 2

[
1 − Φ

(∣∣∣∣ Tn−m
sd
(
T B

n

) ∣∣∣∣)], where Φ is the cdf of a standard normal

distribution and m is the dimension of the parameter vector of copula function (m = 2 in our case).

There is a practical issue of choosing B, the number of bootstrap samples. Scholars have recommended more bootstrap
samples as available computing power has increased. However, increasing the number of samples cannot increase the
amount of information in the original data. It can only reduce the effects of random sampling errors which can arise from
a bootstrap procedure itself (Kloke, McKean, & McKean, 2015). Racine and MacKinnon (2007) discuss this issue at
length and proposed a method for choosing the number of bootstrap samples. Theoretical results derived by Olive (2017)
suggest using B ≥ [nlogn]. We choose the number of bootstrap samples same as sample size because of computing power.

One thing I need to mention here is before we obtain a PMLE of copula parameters (θ, p) in step 2, we need to estimate ϕ
using equations in (1) which is same to estimate ρ = cov(di1, di2), where di j is an indicator variable showing the ith subject
is susceptible for the jth event and P(di j = 1) = 1−P j. For that we have to identify the subjects that are susceptible for the
events and we should know how many subjects are actually susceptible for the jth event according to our model. Since we
have cure rate estimates P̂ j, it indicates n(1 − P̂ j) subjects are susceptible for the jth event. Note that the subject with an
uncensored observation is susceptible. Let D j be the number of uncensored observations for the jth event. Then we need
to choose n(1 − P̂ j) − D j , n j observations from censored observations. Actually, any subject having censored lifetime
observation could be susceptible for the event. However, the smaller the value of observation, the smaller the value of the
survival function, the more likely the subject having this survival time is susceptible. Thus, we can make di j = 1 for the
subjects having the first n j smallest survival times among those censoring times. Once we have di j, we use the sample
covariance, ρ̂, between di1 and di2 to estimate ρ. Plugging ρ̂ and P̂ j into equations in (1), we can get an estimate ϕ̂ for ϕ.

4. Simulation Studies

4.1 Estimation

In this section, we are going to use the results from simulation studies to illustrate the performance of the proposed
methodology. The following four models are selected for model comparison by choosing different survival functions
S 01(·) = S γ1 (·) and S 10(·) = S γ2 (·) (Weibull, log normal or log GEV) and the copula functions C(·, ·) (FGM or generalized
FGM) in the model specification of (6):

Model 1: S γ1 (·) and S γ2 (·) are from Weibull; C(s, t) = st
[
1 + θ(1 − s)(1 − t)

]
;

Model 2: S γ1 (·) and S γ2 (·) are from Weibull; C(s, t) = st
[
1 + θ(1 − s)(1 − t)

]p;

Model 3: S γ1 (·) and S γ2 (·) are from log GEV; C(s, t) = st
[
1 + θ(1 − s)(1 − t)

]p;

Model 4: S γ1 (·) and S γ2 (·) are from log normal; C(s, t) = st
[
1 + θ(1 − s)(1 − t)

]p.

The simulation study includes a total of 48 simulated data sets based upon the four models, four sample sizes (n =

50, 100, 200, 100) and three censoring rates (L: 15% to 20%, M: 30% to 40%, and H: 45% to 60%). Once the setting is
fixed, follow the steps below to get one simulated data set.
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Step 1: Draw two independent uniform random variables (ui1, vi2).

Step 2: Set ui2 = C−1
2|1(ui1, vi2), where C−1

2|1 denotes the pseudo-inverse of C2|1. More specifically, solve the following

equation for ui2 when C(s, t) = st
[
1 + θ(1 − s)(1 − t)

]p: ui2
[
1 + θ(1 − ui1)(1 − ui2)

]p−1[1 + θ(1 − ui1)(1 − ui2) −
θpui1(1 − ui2)

]
− vi2 = 0.

Step 3: Generate a bivariate survival times (Ti1,Ti2) from (ui1, ui2) via Ti1 = F−1
γ1

(ui1) and Ti2 = F−1
γ2

(ui2), where F−1
γ j

(·) is
the quantile function of the distribution corresponding to S γ j (·).

Step 4: Generate latent indicator values (di1, di2) according to the distribution of P(d1 = i, d2 = j) = ϕi j, where i, j is 0 or
1 and di j is an indicator variable with 1 indicating that the ith subject is susceptible for the jth event. If di j = 0,
we change Ti j to be a big number, say 10, 000, since the ith subject is cured for the jth event.

Step 5: Simulate the censoring time Ci j from Weibull distributions, which results in censoring rate for different levels
(L,M,H) where i = 1, · · · , n and j = 1, 2.

Step 6: Obtain the observed data D =
{
(ti1, ti2, δi1, δi2), i = 1, · · · , n

}
, where ti1 = min(Ti1,Ci1) and ti2 = min(Ti2,Ci2), δi1 =

I(Ti1 ≤ Ci1) and δi2 = I(Ti2 ≤ Ci2).

For true values of parameters, we have (µ1, λ1) = (30, 5), (µ2, λ2) = (20, 4),
θ = 0.6 for model 1 and 2, p = 1.5 for model 2, 3 and 4 and (µ1, σ1, ξ1) = (3, 0.2, 0.1), (µ2, σ2, ξ2) = (2, 0.3, 0.2) for model
3. We have (µ1, σ1) = (2.5, 1),
(µ2, σ2) = (2, 1.5) for model 4. We have (ϕ11, ϕ10, ϕ01, ϕ00) = (0.70, 0.15, 0.10, 0.05), (ϕ11, ϕ10, ϕ01, ϕ00) = (0.40, 0.30, 0.20, 0.10)
and (ϕ11, ϕ10, ϕ01, ϕ00) = (0.15, 0.40,
0.25, 0.20) for low censoring, medium censoring and high censoring, respectively.

MATLAB 2017b is our first choice for all the computation and R is used to generate the tables and graphs of the results.
We plot running means of variables of interest vs iteration number such as sample trace plots. By visual inspection, the
chains are began from over-dispersed starting points. Therefore, we decided to discard the first 5,000 iterations which
contributes the burn-in phase and run another 50,000 iterations. To reduce the correlations of successive samples, we store
every 10th values of the chain after burn-in phase which result in 5000 samples for the posterior analysis.

Table 1 provides summary results of model comparison for the cases with n = 200 and n = 500. For each sample size,
a total 12 data sets are generated from each one of the four models and three censoring rates. The bold entries indicate
the best fitted model according to DIC and LPML. The effective number of parameter pD indicates the model complexity.
According to DIC and LPML in Table 1, the best model and true model are consistent except for one case with n = 200
and medium censoring rate. However, Model 3 performs better than any other models even the true model is not Model 3
in small sample sizes such as n = 50 and n = 100. This information is available in Table 1 in Web Appendix B.

The posterior mean, standard deviation (SD) and %95 HPD interval under different scenarios are available in Tables 2 - 5
in Web Appendix B. As we can see that the true values of parameters are inside the 95% highest posterior density (HPD)
interval. The posterior mean of association parameters are essentially unbiased under the true model. The estimated
standard deviation is fairly small. Figure 1 shows the estimated survival function based upon Kaplan-Meier estimator and
four different models when the Model 3 is true model. It shows that the estimated survival function based on Model 3 is
closer to Kaplan-Meier estimates compared to other three models. However, the estimated survival function of Model 3
does not show big difference from Kaplan-Meier estimate, even Model 3 is not true model. This information can be seen
in Figures 1 - 3 in Web Appendix B. The examination of these tables and figures shows misspecification of model can
lead to significantly biased estimates which result in inaccurate inference and incorrect conclusions.
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Table 1. Model comparison results for n=200 and 500.

True Censoring Fitted
Model rate Model n = 200 n = 500

DIC LPML pD DIC LPML pD

1 L 1 2433 -1216 7.78 6040 -3020 7.87
2 2434 -1217 7.82 6041 -30201 7.95
3 2453 -1226 8.70 6050 -3025 9.32
4 2478 -1239 7.91 6119 -3060 7.94

M 1 2104 -1052 7.77 5343 -2672 7.72
2 2105 -1053 7.85 5344 -2673 7.92
3 2108 -1055 8.39 5394 -2697 9.25
4 2132 -1066 7.72 5415 -2708 7.67

H 1 1749 -875 7.45 4243 -2121 7.27
2 1750 -876 7.62 4244 -2122 7.58
3 1754 -877 8.48 4258 -2129 10.98
4 1790 -895 7.43 4332 -2166 7.44

2 L 1 2411 -1206 7.51 6017 -3009 7.57
2 2410 -1205 7.86 6016 -3008 7.70
3 2414 -1207 8.31 6030 -3018 9.15
4 2450 -1225 7.67 6118 -3059 7.83

M 1 2114 -1057 7.13 5231 -2615 7.44
2 2113 -1056 7.45 5230 -2614 7.69
3 2109 -1054 8.69 5262 -2630 9.36
4 2150 -1075 7.87 5323 -2661 7.65

H 1 1702 -852 6.96 4287 -2144 7.56
2 1700 -850 8.54 4286 -2143 7.76
3 1709 -855 8.57 4298 -2149 9.79
4 1731 -866 7.66 4365 -2182 7.76

3 L 1 2465 -1235 6.97 6038 -3022 7.47
2 2463 -1234 8.37 6037 -3021 7.81
3 2187 -1093 9.91 5473 -2736 9.82
4 2258 -1129 7.78 5651 -2826 7.90

M 1 2169 -1089 7.12 5314 -2662 7.06
2 2168 -1088 7.48 5313 -21661 7.76
3 1974 -987 9.42 4861 -2430 9.71
4 2019 -1010 7.65 4973 -2487 7.67

H 1 1752 -883 7.00 4215 -2110 7.29
2 1751 -882 7.22 4214 -2009 7.47
3 1596 -798 8.87 3944 -1972 9.41
4 1069 -535 7.68 3978 -1990 7.87

4 L 1 2594 -1297 6.80 6486 -3243 6.97
2 2595 -1298 7.30 6487 -3244 7.48
3 2581 -1290 8.89 6452 -3226 9.11
4 2575 -1288 7.25 6437 -3219 7.43

M 1 2283 -1142 7.50 5708 -2854 7.68
2 2283 -1142 8.05 5709 -2855 8.24
3 2271 -1136 9.80 5678 -2839 9.76
4 2266 -1133 7.99 ?5665 ?-2833 8.19

H 1 1826 -925 7.29 4566 -2312 7.47
2 1827 -925 7.82 4567 -2312 8.01
3 1817 -920 9.52 4542 -2299 9.49
4 ?1813 ?-918 7.77 ?4532 ?-2295 7.96
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Figure 1. The plots of estimated survival functions of different models based upon simulated data sets from model 3 with
n = 500 and low censoring rate. Left: Survival function estimate for treated eye; Right: Survival function estimate for

untreated eye

4.2 Goodness of Fit Performance

In this section, we perform goodness of fit test for our proposed model rely on empirical type I error and test power. The
following copulas are considered: (1) the generalized FGM, (2) Clayton, and (3) Gaussian. We generate a total of 36
simulated datasets for each different marginal distribution (Weibull, log GEV and log normal) based on three copulas,
with four different sample sizes (100, 200, 500, 1000), under three levels of censoring rate (20%, 40%, 60%), and three
levels of Kendalls τ, (τ = 0.16, 0.20, 0.24). For each dataset, the empirical p-value is calculated using bootstrap samples.

First, we need to generate the data based on three copulas, four different sample sizes, three levels of censoring rate and
three levels of Kendall’s τ.

Secondly, we can follow the steps in Section 3 to calculate the test statistics and produce the p-value through bootstrap
samples. Recall in our bootstrap steps, we state that the subject associated with smaller censored lifetime is more likely to
be the susceptible subject. On the other hand, the subject associated with bigger censored lifetime is more likely to be the
cured subject. Note that the likelihood function in Equation (18) is based upon the entire population which implies this
test is to perform the goodness-of-fit for the model, not only for the copula. We can limit the population to the susceptible
subjects which is the subset of the entire population. In this way, we can test the goodness-of-fit test only for copula. We
can still follow the step in Section 3 to identify the susceptible subjects that have censored lifetime, and change the joint
survival function and joint density function involved in Equation (18) to the ones of susceptible subjects. The type I errors
and test powers are available in Tables 9 - 11 and Tables 15 - 17, respectively, in Web Appendix C.

Table 6 - 8 in Web Appendix C report the empirical type I error under different sample sizes and with three different
marginal distributions for susceptible individuals. The type I error is empirical proportions to reject the null hypothesis
when the null hypothesis is assumed to be true at significance level equal to 5%. As we can see from these tables, the
overall performance of our test is good, especially for sample size equal to 1000. Regardless of marginal distributions
and censoring rates, the type I error decreases as sample size increases. Type I error does not show certain trend when
Kendall’s τ increases.

Table 12 - 14 in Web Appendix C report the empirical power under different sample sizes and with three different marginal
distributions for susceptible individuals. As we can see from these tables, the overall performance of our test in differen-
tiating among new FGM, Clayton and Gaussian copula is good. However, n its hard to differentiate the Gaussian copula
and Clayton copula as the power of rejecting the Clayton copula is low, even with big sample data simulated from Gaus-
sian. This might be due to the right censoring of simulated data, which leads to insufficient information of the upper tail
dependence from the data. It is noted that the test power increases as the sample sizes increases, or the censoring rate
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decreases, but does show certain trend when Kendall’s τ increases.

It is also noted that type I error and test power do not change significantly when marginal distributions are changed. It
implies that our test works regardless of marginal distribution.

5. Real Data Analysis

In this section, we demonstrate our proposed model by using the Diabetic Retinopathy Study (DRS) data which was first
considered by Huster, Brookmeyer, and Self (1989). There are 162 patients and each patient received laser treatment for
one eye and no treatment for the other eye. In the analysis considered here, the time to blindness for the eye randomized to
laser treatment and not received the treatment are denoted as T1 and T2, respectively. The blindness is defined as the time
from initiation of treatment to the time when visual acuity dropped below 5/200 two visits in row. To check the data, there
are 75 censored observations in T1 and 84 censored observations in T2. For those censored observations, some patients
will not have the occurrence of blindness in the period of study because of drop-out and end of study.
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Figure 2. Kaplan-Meier nonparametric estimates for the survival function
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As a preliminary analysis of the data, Figure 2 gives estimated survival function of T1 and T2 based upon the Kaplan
Meier estimates. From this plot, we have some indication of cure fraction. Also, it seems to have better results for the eye
that received treatment which has larger time to blindness in comparison with the eye that received no treatment. Figure
3 gives the scatter plot for T1 and T2. From this plot, we observe the two lifetimes spread out all over the place which
means there is no certain trend for the relationship between T1 and T2. In other word, the correlation between T1 and T2
is weak. From Figure 2 and Figure 3, cure rate model should be considered when a significant proportion of patients are
“cured” and copulas with week dependence should be considered.

We fit the following six models such as log GEV, log normal and Weibull with symmetric FGM and generalized FGM
copulas. The model of log GEV with generalized FGM copula gives lowest DIC (1367.31) and highest LPML (-683.61)
so that our proposed model with log GEV with generalized FGM copula is the best for fitting the data.

As we discussed in the simulation study, the first 5,000 iterations will be ignored, and another 50,000 iterations will be
used to consider the simulation of each parameters. To get approximated uncorrelated values, we store every 10th values
of the chain after burn-in phase which gives a final chain of size 5,000 for the posterior analysis. We also apply our test
procedure to this data. The empirical estimate of Kendalls rank correlation is 0.376. The corresponding p-value of our
test for the generalized FGM is 0.296. At the significant level 0.05, we failed to reject these this copula.

Table 2. Posterior summaries: Bivariate log GEV distribution based upon a generalized FGM copula

Parameter Mean SD 95% Credible Interval DIC LPML
µ1 3.15 0.40 ( 2.37 , 3.91 )
µ2 2.55 0.21 ( 2.15 , 2.96 )
σ1 1.72 0.42 ( 1.01 , 2.59 )
σ2 1.41 0.15 ( 1.15 , 1.71 )
ξ1 -0.21 0.30 ( -0.82 , 0.35 )
ξ2 -0.60 0.17 ( -0.92 , -0.26 ) 1367.31 -683.61
ϕ00 0.23 0.08 ( 0.06 , 0.36 )
ϕ01 0.15 0.10 ( 0.00 , 0.33 )
ϕ10 0.06 0.05 ( 0.00 , 0.15 )
ϕ11 0.57 0.12 ( 0.32 , 0.78 )
p 1.68 0.76 ( 1.09 , 2.79 )
θ 0.35 0.23 ( -0.08 , 0.78 )
θ 0.42 0.20 ( 0.05 , 0.8 )

Table 3. The DRS data: Bayesian criteria for models proposed in Louzada et al. (2013)

DIC LPML
FGM Weibull 1522 -761.81

FGM Exponential 1525 -763.46
PSF Weibull 1527 -764.89

PSF Exponential 1524 -762.87
Frank Weibull 1522 -762.04

Frank Exponential 1525 -763.69
Clayton Weibull 1523 -762.47

Clayton Exponential 1525 -763.93
Independence Weibull 1528 -764.55

Independence Exponential 1530 -765.93

Table 2 shows the posterior summaries of interest assuming log GEV as marginal distribution for the lifetime T1 and T2
for susceptible subjects using a generalized FGM. The posterior mean of all the parameters are in the %95 HPD interval.
The standard deviation is relatively small. The time to blindness of untreated eye has a lower cure rate compared to that
of treated eye. The posterior estimates for other models are shown in tables 18 - 22 in Web Appendix D. Table 3 presents
the model comparison criteria for the same DRS data which is discussed in Louzada et al. (2013). The results show that
our method performs better than all the models proposed in Louzada et al. (2013).

The 3D plot of the joint survival function and corresponding contour plot for model of log GEV with generalized FGM
copula presented in Figure 4. It shows that the joint survival functions are decreasing as time t1 goes up or time t2 goes
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up. It also shows that the joint survival function decreases slowly when t1 goes up compared to when t2 goes up. That
implies that the treatment actually has positive effect on the eye.
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Figure 4. The 3D plot of joint survival function and corresponding contour plot under Model 3. Left: Joint survival
function; Right: Contour plot

6. Discussion

The use of copula functions could be a good alternative way to analyze bivariate lifetime data. Observe that in many
applications of lifetime modeling we could have individuals that are “long term survivors” or “cure individuals”. An
analytical structure of the statistical methodology was developed to model the dependence between cure rate fractions,
and an extremely flexible generalized extreme value distribution was employed to model the logarithm of the survival
time. It is very useful to use copulas to avoid the problem of the marginal distributions depending on the dependence
structure, especially the use of the generalized FGM copula. This allows a broader range of correlations than the typical
FGM copula indicating that the methods can be applied to more data contexts.

To check for adequacy of the generalized copula for our situation, we have extended the PIOS test to the new proposed
test for right-censored bivariate survival times where the possibility of cure must be incorporated. The fact that the
performance of our test does not depend on the choice of marginal distributions provides a lot of flexibility and avoids
model misspecification issues. Also, the test is computationally straightforward and easily constructed.
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