Using Multiobjective Algorithms to Solve the Discrete Mean-Variance Portfolio Selection
- K. P. Anagnostopoulos
- G. Mamanis
Abstract
In this paper we tackle the standard Markowitz mean-variance model extended to include complex constraints. We formulate the problem as a bi-objective mixed integer optimization problem, i.e. maximization of return and minimization of risk. Τo find the set of Pareto-optimal portfolios, we implement two multiobjective algorithms, a population based multiobjective optimizer and a multiobjective optimizer which uses a local search evolution strategy. Finally, we evaluate the performance of the two multiobjective evolutionary algorithms on a public benchmark data set and a data set constructed using a representative emerging market’s index.
- Full Text: PDF
- DOI:10.5539/ijef.v2n3p152
This work is licensed under a Creative Commons Attribution 4.0 License.
Journal Metrics
Index
- Academic Journals Database
- ACNP
- ANVUR (Italian National Agency for the Evaluation of Universities and Research Institutes)
- Berkeley Library
- CNKI Scholar
- COPAC
- Copyright Clearance Center
- Directory of Research Journals Indexing
- DTU Library
- EBSCOhost
- EconBiz
- EconPapers
- Elektronische Zeitschriftenbibliothek (EZB)
- EuroPub Database
- Genamics JournalSeek
- GETIT@YALE (Yale University Library)
- Harvard Library
- Harvard Library E-Journals
- IBZ Online
- IDEAS
- JournalTOCs
- LOCKSS
- MIAR
- NewJour
- Norwegian Centre for Research Data (NSD)
- Open J-Gate
- PKP Open Archives Harvester
- Publons
- RePEc
- ROAD
- Scilit
- SHERPA/RoMEO
- SocioRePEc
- Standard Periodical Directory
- Technische Informationsbibliothek (TIB)
- The Keepers Registry
- UCR Library
- Ulrich's
- Universe Digital Library
- UoS Library
- ZBW-German National Library of Economics
- Zeitschriften Daten Bank (ZDB)
Contact
- Michael ZhangEditorial Assistant
- ijef@ccsenet.org