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Abstract 

In this paper we tackle the standard Markowitz mean-variance model extended to include complex 

constraints. We formulate the problem as a bi-objective mixed integer optimization problem, i.e. 

maximization of return and minimization of risk. Τo find the set of Pareto-optimal portfolios, we 

implement two multiobjective algorithms, a population based multiobjective optimizer and a 

multiobjective optimizer which uses a local search evolution strategy. Finally, we evaluate the 

performance of the two multiobjective evolutionary algorithms on a public benchmark data set and a 

data set constructed using a representative emerging market‟s index. 
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1. Introduction 

Portfolio selection consists in finding the best allocation of wealth among a finite number of assets. A 

fundamental answer to this problem was given by H. M. Markowitz who proposed the mean-variance 

model (Markowitz, 1952; Markowitz, 1990). Through this framework a portfolio is characterized by 

the reward, measured by the expected return, and the risk, measured by the variance of return. Since 

there are two criteria not a single but a set of optimal portfolios, the so-called Pareto-optimal or 

efficient portfolios, should be found. Most of the literature is concerned with minimization of the 

variance measure for given levels of return, in order to find the efficient front. Therefore, a quadratic 

optimization problem under linear constraints should be solved for which computationally effective 

algorithms exist. 

Despite its wide use even today, Markowitz model has some limitations. A weakness is its high 

computational complexity and the problem of estimating the input data (expected returns, variances, 

covariances). Another point of criticism is on the validity of variance as a measure of risk. Variance is a 

symmetric measure of risk, i.e. penalizes negative as well as positive deviations from the mean, and is 

based on the controversial assumption that asset‟s returns are normally distributed (Benati and Rizzi, 

2007; Konno and Yamazaki, 1991). Furthermore it rests on the assumption that investors‟ utility 

functions take on only the single argument of portfolio return (Steuer et al., 2005). Finally, practitioners 

find Markowitz model too simplistic as it neglects some important constraints that are faced in real 

portfolio decision making. (Mitra 2003). Introducing these constraints into the model the portfolio 

selection problem becomes a mixed integer quadratic optimization problem with a complex search 

space with multiple local extrema and discontinuities (Chang et al., 2000; Crama and Schyns, 2003; 

Gilli and Këllezi, 2002; Jobst et al., 2001). 

Since heuristic techniques have been proved quite useful in many hard combinatorial problems, 

researchers took up this advantage to tackle difficult portfolio selection models. Mansini and Speranza 

(1999) have formulated the optimum portfolio choice with round lots as a mixed integer programming 

problem and they have proposed heuristics for its solution based upon the idea of constructing and 

solving mixed integer sub-problems. Chang et al. (2000) have extended the standard Markowitz model 

to deal with cardinality constraints as well as upper and lower bounds on the proportion of the portfolio 

invested in each asset. They show how under this type of constraints the efficient front may become 
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discontinuous. For finding the cardinality constrained efficient front they have applied three heuristic 

algorithms based upon genetic algorithms, tabu search and simulated annealing. Various algorithms 

have also been proposed for solving the constrained portfolio selection problem: a branch-and-bound 

algorithm combined with heuristics (Jobst et al., 2001); hill climbing, simulated annealing and tabu 

search (Schaerf 2002); a simulated annealing algorithm applied to an extended version of the model 

with trading and turnover constraints (Crama and Schyns, 2003); a hybrid local search algorithm which 

combines principles of simulated annealing and evolution strategies (Kellerer and Maringer, 2003); a 

GRASP algorithm enhanced by a learning mechanism and a bias function (Anagnostopoulos et al., 

2004); customized local search, simulated annealing, tabu search and genetic algorithm heuristics 

(Ehrgott et al., 2004); genetic algorithms to solve portfolio selection problems with minimum 

transaction lots (Lin and Liu, 2008). 

However, all the above-mentioned methods transform the multiobjective optimization problem into a 

single objective one by using either a weighted sum of the objective functions or the ε-constraint 

method (usually by minimizing variance subject to return constraint). Computing the efficient front 

with these methods requires the problem to be solved several times for different values of return or 

weight parameters and this may be time consuming. 

In this paper we confront the standard Markowitz model as a bi-objective optimization problem in 

order to find the efficient front in a single execution of the algorithm. Furthermore, we have enriched 

the model with class constraints as well as cardinality and quantity constraints. Class constraints, which 

have been proposed by Chang et al. (2000), but are not addressed in their paper, limit the proportion of 

the portfolio that can be invested in assets in each class. Such constraints represent the tendency of 

investors to limit the „exposure‟ of their portfolio by investing in assets with a common characteristic, 

for example telecommunication stocks, health care stocks, computer software stocks, etc.  

For solving the problem we propose an implementation of two well known Multiobjective 

Evolutionary Algorithms (MOEAs): the Pareto Archived Evolution Strategy (PAES) and the 

Non-dominated Sorting Genetic Algorithm II (NSGA-II). Many multiobjective algorithms have been 

proposed in the literature. The reason for implementing these two algorithms is their different evolution 

philosophy: PAES is a multiobjective optimizer which uses a simple local search evolution strategy, 

while NSGA-II is a population based multiobjective optimizer. 

The remainder of the paper has as follows. In Section 2, after a short review of the Markowitz model, 

the portfolio selection is defined as a multiobjective combinatorial problem. The proposed 

implementation of NSGA and PAES for solving the problem is presented in Section 3. Section 4 is 

devoted to numerical results, and some concluding remarks are presented in Section 5. 

2. Problem formulation 

2.1 The standard portfolio optimization problem 

The problem of optimally selecting a portfolio among a finite number of assets was formulated by H.M. 

Markowitz in 1952. Markowitz work was based on the assumption that investors want maximum return 

and minimum risk from their portfolio. Considering asset‟s value as random variable, he defines return 

as the mean rate of return (per period) observed from historical data over a specific period of time, and 

risk as the variance or standard deviation of these rates. Since a portfolio is a collection of assets (thus a 

weighted sum of random variables) its value is also a random variable which can be described by 

expected return and variance of return.  

Among all portfolios there are special ones for which it cannot be said that one is better than the other. 

All such portfolios that are Pareto-optimal (or non-dominated) offer the maximum level of return for a 

given level of risk, or equivalent, the minimum level of risk for a given level of return. Though 

bi-objective by definition, the standard portfolio selection problem is typically formulated as 

single-objective optimization problem as follows: 

 min 
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where 

 ix : the decision variable which denotes the proportion held of asset i 

 ir : the expected return of asset i  

 ij : the covariance between assets i and j 

  : the desired level of return for the portfolio 

 N : the number of assets available  

The objective function (1) minimizes the total variance (risk) associated with the portfolio, equation (2) 

ensures that the portfolio has an expected return of  , and constraint (3) ensures that 100% of the 

budget is invested in the portfolio. 

2.2 The constrained portfolio optimization problem 

Simplifications to the basic problem have allowed the researchers to think for more realistic portfolio 

selection models. In real portfolio decision making, it is useful to avoid very small holdings, and to 

restrict the total number of assets. These requirements are modeled as threshold and cardinality 

constraints. Furthermore class constraints can be added to the basic model to limit the proportion of the 

portfolio invested in assets with common characteristics (bank assets, insurance assets, etc). In general, 

these constraints lead to sets of discrete variables, and the resulting mixed integer program becomes 

larger in size and computationally more complex than the standard mean-variance model. 

Threshold and cardinality constraints can be added to the model using a binary variable zi, which is 

equal to 1 if the asset i (1  i  N) is held in the portfolio and 0 otherwise. Introducing finite upper and 

lower bounds ii  , for the stock weight xi, threshold constraints are represented by the following 

inequality: 

 Nizxz iiiii ,...,1,    (5) 

To facilitate portfolio management or to control transaction costs, some investors may wish to limit the 

number of assets held in their portfolio. Cardinality constraint, which limits the portfolio to contain 

predetermined number of assets K, can be added to the model by counting the binary variables zi. This 

constraint is expressed by the following equation: 

 Kz
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Moreover class constraints can be added by letting Cm, m=1, ... M, be M mutually exclusive sets of 

assets and Lm and Um be the lower and upper proportion limit for class m. The constraints can be 

defined as: 
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In this paper we reformulate the quadratic optimization problem into a two-objective optimization 

problem. The problem to be solved is formulated as follows: 
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The objective function f1 represents portfolio‟s return while objective function f2 represents portfolio‟s 

variance of return. The N-vector x denotes the set of decision variables xi.  

Here we do not aim to minimize a single objective function like in the first problem but to optimize a 

vector objective function f. We are trying to find those vectors x that are not dominated by any other in 

the feasible set. We say that a vector is non-dominated if its image in the objective space is 

non-dominated. For the specific problem we say that a solution x
1
 dominates the solution x

2
 iff: 

 [f1(x
1
) ≥ f1(x

2
)  f2(x

1
) < f2(x

2
)]  [f1(x
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2
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1
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2
)]  (15) 

The Pareto-optimal front is constituted by all solutions that are not dominated by any other solution in 

the feasible set. 

3. Multiobjective algorithms 

Multiobjective Evolutionary Algorithms (MOEAs) have received great attention over the past two 

decades and several evolutionary-based multiobjective optimization techniques have been proposed. 

The primary reason for this development is their ability to find multiple Pareto-optimal solutions in a 

single run by using non-dominated ranking and selection to move a population towards the Pareto front, 

and specialized techniques to avoid convergence to a single point on the front. Based on this ground a 

number of independent Evolutionary Algorithm (EA) implementations have been proposed, for 

example the MultiObjective Genetic Algorithm (MOGA), the Niched-Pareto Genetic Algorithm 

(NPGA) and the Non-dominated Sorting Genetic Algorithm (NSGA) (Coello, 2000; 2006). A new 

generation of MOEAs started with the introduction of elitism (Zitzler and Thiele, 1999),. Most cited 

MOEAs of the second generation are the Strength Pareto Evolutionary Algorithm (SPEA, SPEA2) 

(Zitzler and Thiele, 1999), PAES, and NSGA II (Coello, 2006). 

Recently, various attempts have been made for treating the portfolio selection as a multiobjective 

optimization problem: a MOEA is employed to solve the multiobjective quadratic programming 

problem (Ong et al., 2005); greedy search, simulated annealing and ant colony optimization 

(Armañanzas and Lozano, 2005); NSGA-II, PESA and SPEA2 for solving the standard portfolio 

optimization problem (Dioşan, 2005); MOEAs with local search for feasible solutions (Streichert et al., 

2003); an hybrid multiobjective optimization approach combining evolutionary computation with 

linear programming (Subbu et al., 2005). 

3.1 Implementation of PAES and NSGA II 

The Pareto Archived Evolution Strategy (PAES) was proposed by Knowles and Corne (Knowles and 

Corne, 2003) in an attempt to adapt local search into multiobjective optimization problems. It uses a 

historical archive A to store non-dominated solutions, i.e., efficient portfolios, and a crowding 

procedure that recursively divides the objective space (specified by the return and variance of the 

portfolio) to maintain diversity. PAES consists of (1+1) evolution strategy where a single parent 

generates a single offspring by random mutation. In each iteration, the mutant solution is compared 

with each member in the archive for Pareto-dominance according the relation (15). If it is dominated by 

any member of the archive it is discarded from the process. On the other hand, if it dominates any 

archive members, these solutions are deleted and the mutant solution enters the archive. If neither 

dominates nor is dominated by any archive member, then it means that the candidate solution is 

non-dominated with the elements of the archive. In this case we distinguish two alternatives. If the 

archive is full, the decision is based on a crowding mechanism; otherwise the candidate solution is 

accepted as member of the archive. 

The crowding procedure recursively divides the objective space occupied by non-dominated solutions 

into different grid regions. The number of divisions in each objective is given by the user and it is 

constant during the process while the grid is adapted to changes on the range in objective space of the 

current solutions in the archive so that it covers this range. For each solution its grid location is 

calculated and for each grid location the number of solutions resides there is computed. The mutant 

solution is accepted if increases the extent of the grid or its image in objective space is in less crowed 

region than any archive member. In Table 1 the PAES pseudocode is presented.  
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NSGA-II was introduced by Deb et al. (2002) as an improved version of NSGA. It uses a fast version 

of non-dominated sorting and selection to move the population along the Pareto-optimal front, and a 

crowding operator to guide the selection process toward a uniformly distributed Pareto front. The 

non-dominated sorting procedure classifies the individuals of each generation in layers based on Pareto 

non-domination. Firstly, the non-dominated individuals are identified so that to constitute the first 

non-dominated front and are assigned a specific rank. Next, these individuals are ignored temporarily 

and the second front of non-dominated individuals is identified. The process continues until all 

individuals in the population are classified. In Table 2 the NSGA-II pseudocode is presented. 

The crowed-comparison operator is used to maintain the diversity of solutions in the population. Each 

individual is characterized by two attributes, that is its domination rank and its crowding distance. The 

crowding distance gives an estimate of the density of solutions surrounding a particular solution in the 

population. It is calculated separately in each layer. Initially the population is sorted according to each 

objective function value and the extreme solutions are assigned a large distance value so that they are 

always selected. The remaining solutions are assigned a distance value equal to the absolute normalized 

difference in the function values of two adjacent solutions.  

The crowding operator then selects individuals with the lowest rank. If two solutions have the same 

rank (i.e. they belong to the same non-dominated front) the procedure selects the solution that is 

located in a lesser crowed region. 

After specifying the ranking procedure of individuals, the NSGA-II operates like a (μ+λ) evolution 

strategy using binary tournament selection, crossover and mutation operators in order to create an 

offspring population. Parent and offspring population are then shuffled together and the individuals are 

ranked according to the crowed-comparison operator. The best μ individuals form the next mating pool 

to be generated. 

An important aspect when implement MOEAs to a specific problem is how to represent a solution and 

how to use the variation (recombination and mutation) operators in order to effectively explore the 

search space. 

We choose both algorithms to have the same solution representation. For representing a solution we 

make use of three sets. The first set Α consists of M real numbers associated with each class. The 

second set B, contains K integer numbers, each one representing an asset in the portfolio while 

set includes K real numbers related with each asset. 

  MiiM ,...1,10,,...,1    

  KMjandMiNC ijiiKMM ,...,1,...1},{},1{,,,...,,,..., 11     

  BiiK
 ,10,,...,

1
   

In both algorithms the following procedure was implemented before every solution evaluation in order 

to find the real solution x (i.e. a portfolio) of the problem. In order to find the real proportion invested 

in each asset we apply the following procedure: 

First we normalize the set A, so that to find the real class proportion (rcp) associated with each class m. 

We have: 
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In this way class proportions both satisfy lower limits and the summation to one.  

Then the real proportion of each class is shared in the corresponding assets of set B. Thereafter, the 

proportion associated with each asset in the portfolio is calculated by the following equation: 
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where )( iclass  returns the class that the asset i belongs. 

In this way all the constraints are satisfied and there is no need for using penalty functions or repair 
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mechanisms. 

For generating the offspring population we use the uniform crossover operator where two selected 

individuals generates a single child. Regarding the first part (set A) the values associated with each 

class are selected with equal probability from one or another parent. With reference to the second and 

third part (sets B and ) we combine the assets from both parents in a new single set along with its 

values from set  in another set according these rules: If an asset is present in both parents it is copied 

only once and the associated value is chosen with equal probability from one or another parent. Next, 

we choose from the newly formed set M assets (with its weight value) each of one class with equal 

probability to ensure that every class has a “representative” in the new solution. The next K-M assets 

are chosen randomly from the remaining assets of both parents. Note that the crossover operator is used 

only by NSGA-II. 

The same mutation operator was used in both algorithms (in PAES as the only generational force) and 

is described below.  

  MiLLp iii
mut
i ,...1   

  Kip ii
mut

ii
,...1    

where p is the is the step value to be chosen. If for any i the value  becomes negative then it is set to 

zero and the corresponding asset changes with such a way so that all the constraints are satisfied. For 

example, if the corresponding asset is the only “representative” of a class then an asset from the same 

class is selected. If there is at least one asset in the portfolio belonging in this category then an asset 

from the entire set is selected except the ones that are currently in the portfolio. If for any i the value α 

become negative then it is simply set to zero. 

4. Numerical results 

We present here the numerical results obtained using a public benchmark data set that is available at the 

OR-Library retained by J.E. Beasley (http://people.brunel.ac.uk/~mastjjb/jeb/orlib/portinfo.html) and a 

new one which was created using asset‟s prices from an emerging market‟s index. The numerical 

results from the OR-Library are referred to the German DAX 100 data set which contains 85 assets. As 

a representative emerging market‟s index the BOVESPA of Brazil was chosen. For estimating the 

required input parameters (expected returns, variances and covariances), daily returns for 55 securities 

were calculated using adjusted daily prices downloaded from the yahoo finance webpage for the period 

2 January 2008 to 28 October 2009. Both algorithms have been implemented in Visual C++ and run on 

a personal computer Core 2 Duo at 2.1 GHz. For both indexes we have classified the assets into six 

categories (M = 6). For DAX 100 each class contains 15 assets except the last one which contains 10 

assets, while for BOVESPA 9 assets are included in each class except one which contains 10 assets. 

The number of assets in the portfolio was fixed to be ten (K = 10) for both problems. The lower 

proportion allowed for investment in each class was 5%, thus Lm = 0.05 for each m = 1,…, 6. We have 

not specified any upper limit here as the lower bound alone specifies an upper bound of 75% of 

investment in each class. For the stock weights xi lower and upper bounds were 1% and 100% 

respectively, i.e., 01.0i , 01.0i , iB. 

For comparing the performance of MOEAs we use the following quantitative metrics: Dist1, Dist2, 

Dist3 and the criterion C (Cardinality) (Czyzak and Jaszkiewicz 1998; Deb and Jain 2002). These 

metrics try to evaluate each desirable attribute of the Pareto-optimal set, i.e. the closeness to the true 

Pareto-optimal front, the uniformity and the cardinality of the generated set. Thus, evaluating the 

quality of approximation sets is also a multiobjective problem. For this reason several performance 

metrics have been suggested. 

The fist two metrics Dist1 and Dist2 measures the closeness of the generated set to the reference set 

which is usually the true Pareto-optimal set. In our problem we do not know the exact Pareto-optimal 

front for the constrained problem, for this reason we use as a reference set the real Pareto front of the 

standard portfolio optimization problem. The two metrics that provide information about the average 

distance of all points in the reference set to the closest solution in the approximation set (Dist1) and the 

worst case (Dist2) are described by the following equations: 

 









x y
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where |P| is the number of solutions generated by the algorithm, while the function c(x, y) measures the 

closeness of two solutions based on the achievement-scalarizing function: 

            xyxyyx 222111 ,,0max, ffwffwc   

where iiw  /1 and i is the difference between the minimal and maximal value of the objective 

function in the reference set. The solution obtained by an algorithm is described by x, while y 

represents the closest solution to x from the true Pareto-optimal set. The measure takes the value zero if 

on all objectives x reaches the value of solution y. 

For measuring uniformity we use Dist3 metric which is defined as the ratio Dist2/Dist1. 

The criterion C measures the percentage of points generated by each algorithm in the combined 

Pareto-optimal front. To obtain the combined Pareto-optimal front, all non-dominated solutions (from 

both algorithms) are compared together with respect to the Pareto-dominance relation. For example, 

suppose that sets A and B have N1 and N2 elements in the combined Pareto-optimal set respectively. 

The ratios N1/N1+N2 and N2/N1+N2 are then used to indicate which algorithm is better in terms of 

solution quality.  

Before the comparison both algorithms was tuned using the Dist1 quality metric and DAX 100 data set. 

The best parameters found for both algorithms are shown in Table 3 for NSGA-II and in Table 4 for 

PAES. 

Due to the randomness of MOEAs, the problem was solved 10 times for each algorithm. Table 5 shows 

the mean and variance for each quality metric and for each algorithm. 

NSGA-II has better performance both in closeness to the reference set (Dist1, Dist2) and the uniformity 

of solutions (Dist3). Furthermore NSGA-II has more stable performance. The variance in ten runs is 

also small and smaller than that of PAES as shown in Tables 5 and 6.  

Considering the C metric NSGA-II again outperforms PAES as it wins 8 out of 10 times for DAX 100 

data set, with mean value equals 0.65, and best value 0.98.  

In Figures 1-3 and 4-5 we provide the graphical representation for one of the ten runs of both 

algorithms together with the efficient front (UEF) that results from the standard portfolio optimization 

problem for DAX 100 and BOVESPA respectively.  

The superiority of NSGA-II in both the convergence and uniformity is also shown by visual 

comparison, although PAES has also converged well especially in the middle and upper part of the 

efficient fronts. However, it is worth mentioning that PAES converges to the optimal set significantly 

faster than NSGA-II. 

5. Conclusions 

We have considered the classical mean-variance portfolio selection problem with additional practical 

constraints such as class constraints, as well as threshold and cardinality constraints. These constraints 

transform the standard Markowitz model in a mixed integer optimization problem and create 

discontinuities in the efficient front.  

We have tried to solve the bi-objective version of Markowitz model rather than the single objective one 

which is the most commonly used, i.e. we have not specify any a priori preferences for objectives. We 

have applied two well known multiobjective evolutionary algorithms to solve the problem. The 

numerical results obtained using a public benchmark data set and a data set constructed using a 

representative emerging market‟s index shown that NSGA-II produces better results although PAES 

converges well. However, a further computational analysis is needed to strengthen these results. This 

analysis as well as the experimentation with other multiobjective algorithms is currently under 

investigation by the authors. 
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Table 1. PAES pseudocode  

create an initial solution s 

add s to the archive A 

while a termination criterion do not met 

 mutate s to produce s' 

 if (s'  A) /* if s' dominates any archive member 

 add s' to the archive A 

 delete dominated solutions 

 replace s with s' 

 else if (s' ~ A) /*if s' is non-dominated with the members of the archive 

 apply test(s, s', A) /* test determines which becomes the new current 

  solution and whether to add s' to the archive A*/ 

end while 

 

Table 2. NSGA-II pseudocode  

create an initial population P of size N 

generation ← 0 

do while generation < maxgenerations 

 evaluate P 

 sort P according to Pareto non-domination 

 assign crowding distance in each individual in P 

 repeat  

 choose the parents using binary tournament selection and the crowding operator 

 recombine parents  

 mutate offspring with probability pm 

 until N individuals are generated-population Q  

 combine P and Q to form C 

 sort C according to Pareto non-domination 

 replace P with the best N solutions from C using the crowding operator 

 generation ← generation + 1 

end do 

 

Table 3. Parameters for NSGA-II 

Population size 1,000 

Number of generations 1,000 

Crossover probability 1 

Mutation probability 0.1 

Step value p 1.3 or 0.7 with equal probability 
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Table 4. Parameters for PAES 

Archive size 1,000 

Number of generations 50,000 

Divisions 125 

Mutation probability 1 

Step value p 1.5 or 0.5 with equal probability 

 

Table 5. Mean and variance for quality metrics and algorithms for DAX 100 data set 

Metric Dist1 Dist2 Dist3 

 Mean Variance Mean Variance Mean Variance 

NSGA II 0.031536 1.510
-7 

0.10446 2.110
-8 

3.314 0.00146 

PAES 0.036 0.00017 0.10514 1.3510
-5 

3.912 5.25 

 

Table 6. Mean and variance for quality metrics and algorithms for BOVESPA 

Metric Dist1 Dist2 Dist3 

 Mean Variance Mean Variance Mean Variance 

NSGA II 0.0164 3.110
-7 

0.047 1.810
-6 

2.86 0.0087 

PAES 0.018 4.810
-7

 0.049 1.110
-5 

2.71 0.03 
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Figure 1. Standard efficient (UEF) and NSGA-II fronts (DAX 100) 
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Figure 2. Standard efficient (UEF) and PAES fronts (DAX 100) 
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Figure 3. NSGA-II and PAES fronts (DAX 100) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Standard efficient (UEF) and NSGA-II fronts (BOVESPA) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Standard efficient (UEF) and PAES fronts (BOVESPA) 

0

0,0005

0,001

0,0015

0,002

0,0025

0,003

0 0,0005 0,001 0,0015

Risk

R
e
tu
rn

UEF

NSGA-II

0

0,0005

0,001

0,0015

0,002

0,0025

0,003

0 0,0005 0,001 0,0015

Risk

R
e
tu
rn

UEF

PAES


