Equity Premium Prediction with Structural Breaks: A Two-Stage Forecast Combination Approach
- Anwen Yin
Abstract
This paper introduces a two-stage out-of-sample predictive model averaging approach to forecasting the U.S. market equity premium. In the first stage, we combine the break and stable specifications for each candidate model utilizing schemes such as Mallows weights to account for the presence of structural breaks. Next, we combine all previously averaged models by equal weights to address the issue of model uncertainty. Our empirical results show that the double-averaged model can deliver superior statistical and economic gains relative to not only the historical average but also the simple forecast combination when forecasting the equity premium. Moreover, our approach provides an explicit theory-based linkage between forecast combination and structural breaks which distinguishes this study from other closely related works.- Full Text: PDF
- DOI:10.5539/ijef.v11n12p50
This work is licensed under a Creative Commons Attribution 4.0 License.
Journal Metrics
Index
- Academic Journals Database
- ACNP
- ANVUR (Italian National Agency for the Evaluation of Universities and Research Institutes)
- Berkeley Library
- CNKI Scholar
- COPAC
- Copyright Clearance Center
- Directory of Research Journals Indexing
- DTU Library
- EBSCOhost
- EconBiz
- EconPapers
- Elektronische Zeitschriftenbibliothek (EZB)
- EuroPub Database
- Genamics JournalSeek
- GETIT@YALE (Yale University Library)
- Harvard Library
- Harvard Library E-Journals
- IBZ Online
- IDEAS
- JournalTOCs
- LOCKSS
- MIAR
- NewJour
- Norwegian Centre for Research Data (NSD)
- Open J-Gate
- PKP Open Archives Harvester
- Publons
- RePEc
- ROAD
- Scilit
- SHERPA/RoMEO
- SocioRePEc
- Standard Periodical Directory
- Technische Informationsbibliothek (TIB)
- The Keepers Registry
- UCR Library
- Ulrich's
- Universe Digital Library
- UoS Library
- ZBW-German National Library of Economics
- Zeitschriften Daten Bank (ZDB)
Contact
- Michael ZhangEditorial Assistant
- ijef@ccsenet.org