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Abstract 

This paper introduces a two-stage out-of-sample predictive model averaging approach to forecasting the U.S. 

market equity premium. In the first stage, we combine the break and stable specifications for each candidate 

model utilizing schemes such as Mallows weights to account for the presence of structural breaks. Next, we 

combine all previously averaged models by equal weights to address the issue of model uncertainty. Our 

empirical results show that the double-averaged model can deliver superior statistical and economic gains 

relative to not only the historical average but also the simple forecast combination when forecasting the equity 

premium. Moreover, our approach provides an explicit theory-based linkage between forecast combination and 

structural breaks which distinguishes this study from other closely related works. 

Keywords: equity premium, forecast combination, model averaging, structural break 

1. Introduction 

Forecasting the equity premium is of great importance to diverse areas such as portfolio allocation and 

performance evaluation of fund managers (e.g. Campbell, 1987; Campbell & Shiller, 1988; Fama & French, 

1988; Fama & French, 1989; Ait-Sahali & Brandt, 2001; Avramov & Wermers, 2006). However, there is a 

long-standing debate regarding whether the equity premium can be meaningfully predicted out-of-sample by 

taking advantage of the information contained in various economic variables (e.g. Campbell & Thompson, 2008; 

Dangl & Halling, 2012; Pettenuzzo, Timmermann, & Rossen, 2014). By undertaking a comprehensive analysis 

investigating the aforementioned issue, Goyal and Welch (2008) provide empirical evidence showing that these 

variables perform poorly forecasting the equity premium out-of-sample relative to the historical mean which 

assumes a constant expected premium, and their predictive content seems episodic and unstable over time. For 

instance, in their article, most predictive gains come from the period following the oil shock in the 1970s, and 

they seem to disappear if those data are excluded. Goyal and Welch (2008) suggest that, in addition to the 

uncertainty on model selection, the unsatisfactory performance of many predictive variables could be attributed 

to issues related to structural break or parameter instability in the underlying data generating process.  

In response to the findings reported in Goyal and Welch (2008), recent developments in the literature of 

forecasting equity returns show that the predictive power of various predictors can be uncovered or restored once 

an appropriate estimation methodology other than OLS is employed. Based on the general framework considered 

in Goyal and Welch (2008), Rapach, Strauss, and Zhou (2010) demonstrate that forecast combination could 

consistently improve upon the historical mean benchmark over time in terms of both statistical and economic 

gains. Additionally, they argue that, due to the uncertainty regarding model selection and parameter instability, 

the benefits of forecast combination come from taking advantage of all available information and its linkage to 

the real economy. However, it is not clear how the weighting methods combining models considered in Rapach 

et al. (2010) are explicitly linked with structural breaks. Specifically, despite the empirical evidence of instability 

documented in works such as Rapach and Wohar (2006), Rapach et al. (2010) do not consider any candidate 

model which allows for breaks when combining models, resulting in difficulty in interpreting the empirical 

results linking the success of forecast combination with structural breaks. 

Our main contribution to the literature is to introduce a two-stage forecast combination methodology which 

improves upon the simple model averaging and can be easily implemented in empirical works. Our approach 

explicitly accounts for the possible presence of structural breaks beside the uncertainty on model selection, 



ijef.ccsenet.org International Journal of Economics and Finance Vol. 11, No. 12; 2019 

51 

leading to superior performance in terms of both statistical and economic gains when forecasting the equity 

premium out-of-sample relative to not only the historical mean, but also other competing models. 

We consider a set of 14 bivariate predictive models, along with the historical average as those investigated in 

closely related studies such as Goyal and Welch (2008). However, our framework differs from them in that we 

also consider the structural break specification of those 14 bivariate models, i.e., all model coefficients are 

subject to a discrete break at an unknown date, thus, resulting in 28 candidate predictive models in total. 

In the first step, for each model, we construct an averaged model by combining its break and stable 

specifications utilizing a number of weighting schemes, namely, equal weights, Schwarz information criterion 

weights (SIC), discounted mean squared forecast error weights (DMSFE), and Mallows weights. The first three 

are well documented and widely used in empirical analysis forecasting economic and financial variables (e.g. 

Stock & Watson, 2004). The last method, Mallows weights in the presence of possible breaks developed in 

Hansen (2009), is relatively new in the literature of forecast combination. This step is intent on eliminating the 

uncertainty surrounding parameter instability for each model. At the end of this stage, we have reduced the 

number of candidate models from 28 to 14. In the second stage, we simply average all 14 combined models 

constructed in the previous step based on equal weights, i.e., each previously averaged model receives a weight 

value of 1/14. Hence, we have completed constructing the double-averaged model. This stage of averaging aims 

to eliminate the uncertainty regarding model selection. The reason for selecting equal weights in the second stage 

is due to the fact that equal weights tend to outperform many estimation-based optimal weights when averaging 

over a large number of forecasting models in empirical analysis.  

To empirically evaluate the statistical performance of our two-stage model averaging approach, we adopt the 

out-of-sample 𝑅𝑂𝑆
2  statistic of Campbell and Thompson (2008), along with a graphical device based on the 

differences of the cumulative sum of the squared forecast errors between the historical mean benchmark and the 

double-averaged model. Our empirical results demonstrate that the double-averaged model significantly 

outperforms the simple forecast combination method considered in Rapach et al. (2010) and others in terms of 

the 𝑅𝑂𝑆
2  statistic. For example, when predicting monthly returns, the simple forecast combination reports 𝑅𝑂𝑆

2  

value of 0.027%. However, all four weighting schemes within the two-stage forecast combination framework 

deliver at least a 𝑅𝑂𝑆
2  value of 3.266%, suggesting that our approach can achieve about 3% more reduction in 

the mean squared forecast error than the simple forecast combination over the same predictive sample. Moreover, 

the statistical performance of the two-stage combination approach is consistent over time and robust to the 

choice of subsamples. For instance, when evaluating monthly forecasts for the smallest sample following the 

2008-2009 financial crisis, the double-averaged model based on Mallows weights reports a 𝑅𝑂𝑆
2  value of 

2.563%, while that from the simple forecast combination is merely 0.008%. In addition, we find that the 

double-averaged model forecasts particularly well during economic recessions. Our empirical results are 

qualitatively the same across all forecast horizons. 

In addition to the metric assessing statistical performance, the quality of returns prediction is often assessed 

based on the financial gains generated by the underlying models. Therefore, we evaluate and compare the 

economic gains measured according to the relative annualized certainty equivalent return (CER) and Sharpe ratio 

following related studies such as Ferreira and Santa-Clara (2011) and Li and Tsiakas (2017). In our empirical 

results, the two-stage forecast combination always leads to superior economic gains relative to the historical 

average across all time horizons and subsamples. For example, using the Mallows weight for monthly forecasts 

over the largest evaluation sample, we obtain an economic gain of 0.639% per year, the greatest among the four 

proposed weighting schemes. Turning to the Sharpe ratio, our empirical results are qualitatively the same as in 

the CER case: the two-stage forecast combination always results in superior Shape ratio gains relative to the 

historical average across all time horizons and subsamples. 

The remainder of this paper is organized as follows. Section 2 outlines our two-stage model averaging 

methodology. Section 3 introduces the data and presents empirical results for the two-stage forecast combination 

approach and other competing models and methods. Section 4 examines the economic value of the two-stage 

forecast combination. Section 5 concludes. 

2. Methodology 

We begin by providing an overview of baseline linear predictive models for the market equity premium. Next, 

we discuss in detail the two-stage forecast combination when constructing out-of-sample forecasts. Finally, 

common statistical measures evaluating forecasts are discussed. We focus on the one-step ahead point forecast of 

the market equity premium across all available data frequencies. 
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2.1 Baseline Predictive Model 

First, following related studies in the literature, we present the linear bivariate regression model forecasting 

one-period ahead equity premium where all coefficients are assumed constant over time: 

𝑟𝑡+1 = 𝛽0
𝑖 + 𝛽1

𝑖𝑥𝑖,𝑡 + 𝑒𝑡 ,                                  (1) 

where 𝑟𝑡+1 is the one-step ahead excess returns, 𝑥𝑖,𝑡 is the variable i available in time t to predict next period 

returns, stemming from a broad set of economic variables. 𝑒𝑡 denotes the corresponding innovation. This 

specification is also referred to as the stable model subsequently as both 𝛽0
𝑖  and 𝛽1

𝑖  remain constant. 

Turning to the construction of forecasts, we construct a series of forecasts of the market equity premium 

employing a recursive or expanding estimation window. Specifically, we divide the full sample of T observations 

into two non-overlapping segments: an estimation sample of size R, and an evaluation sample of size P, where R 

+ P = T. Under the recursive estimation scheme, in each period, the previously estimated model coefficients are 

updated by including one more recently available observation, beginning with the first R observations. For 

instance, the first one-step ahead out-of-sample forecast utilizing predictor 𝑥𝑖,𝑡 is 

�̂�𝑖,𝑅+1 = �̂�0,𝑅
𝑖 + �̂�1,𝑅

𝑖 𝑥𝑖,𝑅,                                  (2) 

where �̂�0,𝑅
𝑖  and �̂�1,𝑅

𝑖  are the OLS estimates of 𝛽0
𝑖  and 𝛽1

𝑖 , respectively, in Eq. (1) based on the first R 

observations. The second forecast can be generated by 

�̂�𝑖,𝑅+2 = �̂�0,𝑅+1
𝑖 + �̂�1,𝑅+1

𝑖 𝑥𝑖,𝑅+1,                              (3) 

where �̂�0,𝑅+1
𝑖  and �̂�1,𝑅+1

𝑖  are the OLS estimates of 𝛽0
𝑖  and 𝛽1

𝑖  based on the first R+1 observations. Proceeding 

in this manner until the end of the entire sample, we have thus recursively generated a series of forecasts of size 

P, {�̂�𝑖,𝑠}
𝑠=𝑅+1

𝑇
, using predictor 𝑥𝑖 . We apply the procedure outlined above to all predictive models denoted by 

the predictor they include, 𝑥𝑖, where i = 1, ...,M, and M is the number of predictors available. 

In practice, it is likely that there is no prior information suggesting that model (1) is the correct specification, 

given the well documented empirical evidence of structural breaks (see Paye & Timmermann, 2006; and Rapach 

& Wohar, 2006). Therefore, a seemingly natural competing alternative to the stable model (1) is a model 

allowing for instability in its coefficients: 

𝑟𝑡+1 = 𝛽0,𝑡
𝑖 + 𝛽1,𝑡

𝑖 𝑥𝑖,𝑡 + 𝑒𝑡 .                                (4) 

Comparing with model (1), in Eq. (4), all coefficients become 𝛽0,𝑡
𝑖  and 𝛽1,𝑡

𝑖 , indicating that they are 

time-dependent. The predictive model represented by Eq. (4) is called the break model subsequently. 

Empirically, it is difficult to accurately estimate break sizes and locations, especially when the sample size is 

relatively small. Hence, increasing the number of discrete breaks for a predictive regression does not necessarily 

result in superior forecasting performance, as this involves a trade-off between predictability and complexity. 

To boost predictive accuracy while reducing model complexity, here we only consider a discrete parameter break 

occurring at an unknown date 𝜏 in the break model (4). Hence, Eq. (4) can be rewritten as 

𝑟𝑡+1 = {
𝛽0,1

𝑖 + 𝛽1,1
𝑖 𝑥𝑖,𝑡 + 𝑒𝑡 , 𝑡 < 𝜏,

𝛽0,2
𝑖 + 𝛽1,2

𝑖 𝑥𝑖,𝑡 + 𝑒𝑡 , 𝑡 ≥ 𝜏,
                             (5) 

where 𝜏 denotes the period when break occurs. However, for identification, the break date 𝜏 is restricted to the 

closed interval ,𝜏1, 𝜏2- which is bounded away from the ends on both sides of the estimation sample, i.e., 

1 < 𝜏1 < 𝜏2 < 𝑅. 

The unknown break date 𝜏 can be estimated by concentration. Specifically, given a particular value of 𝜏, we 

can estimate model (5) by OLS separately for each regime, then compute the corresponding sum of squared 

errors, 𝑆𝑆𝐸(𝜏) = ∑ �̂�𝑡(𝜏)𝑠
𝑡=1 . We apply this approach to all possible values of 𝜏 specified in ,𝜏1, 𝜏2-, hence, 

generating a sequence of values of the sum of squared errors, *𝑆𝑆𝐸(𝜏)+𝜏=𝜏1

𝜏2 . Our break date estimate, �̂�, would be 

the value of 𝜏 which is the global minimizer of *𝑆𝑆𝐸(𝜏)+𝜏=𝜏1

𝜏2 . After dating the break, we employ the post-break 

window to estimate model coefficients in order to construct forecasts. 

2.2 Benchmark Model 

In the literature of forecasting stock returns, the efficient-market hypothesis inspired, historical mean model has 
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been proven to be a simple yet difficult to beat benchmark. Following related studies, we continue to use the 

historical average as benchmark. Specifically, it can be specified as 

𝑟𝑡+1 = 𝛽0 + 𝑒𝑡 .                                     (6) 

Again, we apply the recursive estimation window to construct a series of forecasts of size P based on model (6), 

and denote this series of forecasts as *�̅�𝑠+𝑠=𝑅+1
𝑇 . 

2.3 First Stage Forecast Combination 

For a given bivariate model based on variable 𝑥𝑖, we have two naturally competing candidates to generate 

forecasts of the equity premium as shown in Eq. (1) and Eq. (5). In lieu of selecting a single best model among 

the two, here we combine Eq. (1) and Eq. (5) to form an averaged predictive model based on variable 𝑥𝑖, taking 

into account the uncertainty regarding parameter instability. 

Specifically, we attach weight 𝑤 to the break specification (5), and 1 − 𝑤 to the stable specification (1), where 

𝑤 ∈ ,0,1-. Hence, the combined bivariate predictive model based on 𝑥𝑖 is: 

𝑟𝑡+1 = 𝑤{𝛽0,𝑡
𝑖 + 𝛽1,𝑡

𝑖 𝑥𝑖,𝑡} + (1 − 𝑤){𝛽0
𝑖 + 𝛽1

𝑖𝑥𝑖,𝑡} + 𝑒𝑡 .                   (7) 

Next, we will propose and discuss several approaches regarding how to assign weights, 𝑤 and 1 − 𝑤, to the 

break and stable specifications. 

2.3.1 Equal Weights 

Forecast combination could be at a disadvantage over relying on a single model because it introduces additional 

estimation errors in situations where the weights need to be estimated. If so, the predictive gains from averaging 

could be wiped out by the noises introduced from estimating errors. This could help explain that, the seemingly 

suboptimal weighting schemes, such as equal weights, have widely been found to dominate complex methods 

which would be optimal in the absence of parameter estimation errors. Therefore, the first method is to use equal 

weights to combine the stable and break specification. 

Specifically, the averaged model (7) based on equal weights becomes: 

𝑟𝑡+1 =
1

2
{𝛽0,𝑡

𝑖 + 𝛽1,𝑡
𝑖 𝑥𝑖,𝑡} +

1

2
{𝛽0

𝑖 + 𝛽1
𝑖𝑥𝑖,𝑡} + 𝑒𝑡 .                      (8) 

2.3.2 DMSFE Weights 

Stock and Watson (2003) propose a combination method based on the discounted mean squared forecast error 

(DMSFE) which computes weights according to the past performance of individual models over a holdout period. 

Specifically, for a predictive model j at time t, its weight is 

𝑤𝑗,𝑡
𝑑 =

𝜑𝑗,𝑡
−1

∑ 𝜑𝑠,𝑡
−1𝑀

𝑠=1
,                                   (9) 

where 

𝜑𝑗,𝑡 = ∑ 𝜃𝑡−𝑙𝑡
𝑙=1 (𝑟𝑙+1 − �̂�𝑙+1)2,                            (10) 

and 𝜃 is a discount factor and M is the number of candidate models available. The DMSFE scheme assigns 

higher weight to a model with smaller historical error rate. When 𝜃 = 1, there is no discounting, hence all 

historical observations are taken equally when calculating MSFE over the holdout sample. If 𝜃 < 1, DMSFE 

allows for higher weights on the more recent observations. With DMSFE weights, the averaged model (7) 

becomes: 

𝑟𝑡+1 = 𝑤𝑡
𝑑{𝛽0,𝑡

𝑖 + 𝛽1,𝑡
𝑖 𝑥𝑖,𝑡} + (1 − 𝑤𝑡

𝑑){𝛽0
𝑖 + 𝛽1

𝑖𝑥𝑖,𝑡} + 𝑒𝑡 .                 (11) 

2.3.3 Schwarz Information Criterion Weights 

Bayesian model averaging (BMA) and its application in forecasting financial and economic variables have been 

receiving growing attention. In practice, the difficulty in constructing BMA estimates and forecasts lies in the 

complexity of obtaining the objects required to construct the weighted average. In situations where the predictive 

models’ marginal likelihoods are difficult to compute, we can use a simple approximation based on the Bayesian 

information criterion. The Schwarz information criterion (SIC) takes the form 

𝑆𝐼𝐶𝑖 =
−2𝑙𝑜𝑔𝐿𝑖𝑘𝑖

𝑇
+

𝑘𝑖𝑙𝑛(𝑇)

𝑇
,                              (12) 

where 𝑙𝑜𝑔𝐿𝑖𝑘𝑖 is the log-likelihood of predictive model i, 𝑘𝑖 is the number of parameters in model i, and T is 

the sample size. The SIC provides an asymptotic approximation to the marginal likelihood needed to compute 

BMA weights. Therefore, at time period t, if the SIC value of the break specification (5) is 𝑆𝐼𝐶𝑏(𝑡), and that of 
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the stable model (1) is 𝑆𝐼𝐶𝑠(𝑡), then the BMA weights can be approximated by the SIC weights. Specifically, 

the weight for the break model, 𝑤𝑡
𝑠, is: 

𝑤𝑡
𝑠 =

𝑒𝑥𝑝(−0.5𝑆𝐼𝐶𝑏(𝑡))

𝑒𝑥𝑝(−0.5𝑆𝐼𝐶𝑏(𝑡))+𝑒𝑥𝑝(−0.5𝑆𝐼𝐶𝑠(𝑡))
.                            (13) 

Hence, the averaged model (7) under SIC weights becomes: 

𝑟𝑡+1 = 𝑤𝑡
𝑠{𝛽0,𝑡

𝑖 + 𝛽1,𝑡
𝑖 𝑥𝑖,𝑡} + (1 − 𝑤𝑡

𝑠){𝛽0
𝑖 + 𝛽1

𝑖𝑥𝑖,𝑡} + 𝑒𝑡 .                   (14) 

2.3.4 Mallows Weights 

Hansen (2009) proposes a novel averaging estimator combining the structural break model and its stable 

specification by weights selected through minimizing a Mallows information criterion, whose penalty term is 

adjusted for the possible presence of non-stationarity. 

In practice, the Mallows weight for the structural break model takes the form of a simple function of the SupF 

test statistic as presented in Andrews (1993), and a penalty parameter whose values are tabulated in Hansen 

(2009) for various combinations of trimming parameter and model size to meet regular empirical needs. 

Specifically, in period t, the Mallows weight for the break model (5), 𝑤𝑡
𝑚, is 

𝑤𝑡
𝑚 = {

0, 𝑖𝑓 𝐹𝑡 < �̅�,

1 −
�̅�

𝐹𝑡
, 𝑖𝑓 𝐹𝑡 ≥ �̅�,

                                 (15) 

where 𝐹𝑡 is the SupF statistic in Andrews (1993), and �̅� is the penalty parameter whose value relies on the 

asymptotic distribution of the SupF statistic.  

Under Mallows weights, the averaged model (7) becomes: 

𝑟𝑡+1 = 𝑤𝑡
𝑚{𝛽0,𝑡

𝑖 + 𝛽1,𝑡
𝑖 𝑥𝑖,𝑡} + (1 − 𝑤𝑡

𝑚){𝛽0
𝑖 + 𝛽1

𝑖𝑥𝑖,𝑡} + 𝑒𝑡 .                  (16) 

2.4 Second Stage Forecast Combination 

In our framework, we begin with M linear predictive models assuming constant coefficients as in Eq. (1) with 

each model differing from others by the unique predictor it includes. Since we are concerning with the presence 

of structural breaks, we extend the total number of candidate models to 2M by adding break specifications of the 

original M models.  

In the first step, we use one of the four weighting methods outlined in previous sections to combine the break 

and stable specifications for each candidate model. In the end, we have reduced the number of models from 2M 

to M. This stage intends for accommodating the uncertainty regarding parameter instability for individual models. 

However, after the completion of averaging break and stable specifications, the uncertainty on which combined 

model out of the M averaged candidates best predict the equity premium remains. Therefore, in the second stage, 

we average the remaining M combined models to form a double-averaged model. Nonetheless, in the second step, 

we simply use equal weights to convert M candidates into a single forecasting model. The reason for our 

weighting choice in this step is that pooling a large number of models by equal weights tend to outperform other 

complex weighting schemes in empirical works. When the number of models is large, the possible gains from 

complex weights may be dominated by the extra noises from estimating additional parameters. 

After the first stage, we have combined the break and stable specifications for each bivariate model i based on 

predictor 𝑥𝑖, using one of the four proposed weighting schemes to obtain 𝑀𝑂𝐷𝐸𝐿𝑖
𝑗
, where 𝑖 = 1, … , 𝑀, and 

𝑗 ∈ *𝑒, 𝑑, 𝑠, 𝑚+ denotes the combination methodology used: e, equal weights; d, DMSFE weights; s, SIC weights; 

m, Mallows weights. Next, we assign equal weights to all M averaged models constructed previously. Therefore, 

our double-averaged predictive model is: 

𝑟𝑡+1 =
1

𝑀
∑ {𝑤𝑖,𝑡

𝑗
[𝛽0,𝑡

𝑖 + 𝛽1,𝑡
𝑖 𝑥𝑖,𝑡] + (1 − 𝑤𝑖,𝑡

𝑗
)[𝛽0

𝑖 + 𝛽1
𝑖𝑥𝑖,𝑡]}𝑀

𝑖=1 + 𝑒𝑡 .              (17) 

To summarize, in the first stage, to address the possibility of structural breaks, we combine the break and stable 

specifications for each model i by weighting methods such as Mallows weights. Then, to circumvent the danger 

of forcing extra noises into the construction of forecasts from complex weighting schemes, we simply use equal 

weights to pool all averaged models obtained from the first stage to form the double-averaged model. 

2.5 Forecast Evaluation 

Conventionally, the statistical measure assessing the quality of out-of-sample forecasts is the mean squared 

forecast error (MSFE), which is defined as: 
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𝑀𝑆𝐹𝐸 =
1

𝑃
∑ (𝑟𝑡+1 − �̂�𝑡+1)2𝑇−1

𝑡=𝑅 ,                             (18) 

where 𝑟𝑡+1 is the realized value of the market equity premium in period t + 1, �̂�𝑡+1 is the forecast generated at 

period t, R is the training sample size, P is the evaluation sample size and T = P + R is the total sample size. 

For the purposes of comparing the forecasting performances with those reported in closely related studies, we 

adopt the MSFE-based out-of-sample 𝑅𝑂𝑆
2  statistic considered in Campbell and Thompson (2008) to measure 

statistical gains. Specifically, 

𝑅𝑂𝑆
2 = 100 × .1 −

𝑀𝑆𝐹𝐸𝑖

𝑀𝑆𝐹𝐸0/,                               (19) 

where i indexes the model under examination, and the superscript 0 represents the historical mean. The 𝑅𝑂𝑆
2  

statistic measures the percentage reduction in terms of the mean squared forecast error for a model under 

examination relative to the historical average. Thus, intuitively, a positive value of the 𝑅𝑂𝑆
2  implies better 

predictive performance for model i than the historical mean. The higher the 𝑅𝑂𝑆
2  value, the better the 

out-of-sample predictive gains. 

 

Figure 1. Monthly data sample correlation matrix plot 

Note. Data sample runs from 1927:1 to 2016:12. Full descriptions of the variables are given in the data description section of this paper. 

 

In addition, to better visually inspect the predictive gains over the entire evaluation sample, following the 

empirical methodology considered in Rapach et al. (2010), we use the cumulative differences in squared forecast 

errors (CDSFE) between the benchmark and the double-averaged model to construct a graphical device 

evaluating forecasts. Specifically, 

𝐶𝐷𝑆𝐹𝐸𝑡 = ∑ (𝑟𝑠+1 − �̅�𝑠+1)2𝑡
𝑠=1 − ∑ (𝑟𝑠+1 − �̂�𝑠+1)2,𝑡

𝑠=1                       (20) 

where �̅�𝑠+1 is the one-step ahead prediction from model (6), and �̂�𝑠+1 is the one-period ahead point forecast 

from either model (1) or model (17). A positive value of 𝐶𝐷𝑆𝐹𝐸𝑡 indicates that the forecasting model under 

examination outperforms the benchmark by reporting a smaller value of MSFE as of time 𝑡.  
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Unlike related studies such as Rapach et al. (2010) and Dangl and Halling (2012), we do not base the 

significance of 𝑅𝑂𝑆
2  on the family of the MSFE-based test statistics proposed in Clark and West (2007). These 

tests are proposed under the assumption that forecasts are produced from a stationary environment, whereas here 

we explicitly allow for the possibility of structural breaks when constructing the double-averaged model. Hence, 

the notion of stationarity does not apply in our settings. Consequently, the critical values provided in Clark and 

West (2007) for testing the null hypothesis of equal predictive accuracy would not be statistically valid for our 

empirical results. 

 

Table 1. Summary statistics 

 

Panel A: Monthly Data 

 

Panel B: Quarterly Data 

 

Panel C: Annual Data 

 

Mean Standard Deviation 

 

Mean Standard Deviation 

 

Mean Standard Deviation 

ERET 0.006 0.055 

 

0.011 0.112 

 

0.042 0.194 

DY -3.362 0.458 

 

-3.351 0.457 

 

-3.315 0.447 

DP -3.367 0.460 

 

-3.366 0.463 

 

-3.372 0.468 

EP -2.733 0.417 

 

-2.733 0.423 

 

-2.738 0.410 

DE -0.634 0.331 

 

-0.633 0.336 

 

-0.634 0.321 

SVAR 0.003 0.006 

 

0.009 0.015 

 

0.035 0.048 

BM 0.572 0.265 

 

0.577 0.267 

 

0.565 0.262 

NTIS 0.018 0.026 

 

0.017 0.025 

 

0.018 0.027 

TBL 0.034 0.031 

 

0.034 0.031 

 

0.035 0.031 

LTY 0.052 0.028 

 

0.051 0.028 

 

0.051 0.027 

LTR 0.005 0.024 

 

0.015 0.047 

 

0.059 0.100 

TMS 0.017 0.013 

 

0.017 0.013 

 

0.016 0.014 

DFY 0.011 0.007 

 

0.011 0.007 

 

0.012 0.008 

DFR -0.046 0.034 

 

-0.036 0.049 

 

0.012 0.083 

INFL 0.002 0.005 

 

0.007 0.013 

 

0.03 0.041 

Note. This table reports summary statistics for the equity premium which is computed as returns on the Standard & Poor 500 portfolio minus 

the risk free rate, along with the predictive variables. The full sample runs from 1927 to 2016. The set of predictors examined are: ERET, 

equity premium or excess return; DY, dividend-yield; DP, dividend-price ratio; EP, earnings-price ratio; DE, dividend-payout ratio; SVAR, 

stock market variance; BM, book-to-market ratio; NTIS, net-equity expansion; TBL, Treasury bill rate; LTY, long-term yield; LTR, 

long-term return; TMS, term spread; DFY, default yield spread; DFR, default return spread; INFL, inflation. 

 

3. Empirical Results 

In this section, we present data and empirical results regarding statistical gains when forecasting the market 

equity premium with two-stage forecast combination. 

3.1 Data Description 

We use data on aggregate stock returns along with a set of 14 predictive variables. Our data come from an 

updated database maintained by Amit Goyal. Since the raw data samples vary substantially across individual 

regressors, to better compare results, we adopt the largest common sample from 1927 to 2016 in subsequent 

empirical analysis. All available data frequencies are analyzed. 

Stock returns are measured as continuously compounded returns on the Standard and Poor’s (S&P) 

value-weighted 500 index including dividends. To construct the series of equity premium, a 3-month Treasury 

bill rate is subtracted from stock returns. Turning to the set of predictive variables, it includes: the dividend-price 

ratio (dp); the dividend-yield (dy); earnings-price ratio (ep); dividend-payout ratio (de); the stock market 

variance (svar); book-to-market ratio (bm); net equity expansion (ntis); Treasury bill rate (tbl); long-term yield 

(lty); long-term return (ltr); term spread (tms); default yield spread (dfy); default return spread (dfr); inflation 

(infl). For the sake of brevity, we refer the interested readers to Goyal and Welch (2008) for details regarding the 

identity and construction of these predictive variables. 

Descriptive statistics for the equity premium along with 14 predictive variables across all available time horizons 

are reported in Table 1. On average, the U.S. market equity premium shows return rates of 0.6%, 1.1% and 4.2%, 

for monthly, quarterly and yearly data, respectively.  

In light of the weak results documented in Goyal and Welch (2008), in Figure 1 we present a correlation matrix 

for the equity premium along with 14 predictors at the monthly horizon. Figure 1 shows that the dependent 
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variable, the U.S. market equity premium, is only weakly correlated with predictive variables. This could help 

explain the primary message conveyed in Goyal and Welch (2008) that forecasts from the simple bivariate 

models cannot reliably and consistently beat those from the prevailing mean. Moreover, some predictors, such as 

the dividend-price ratio (dp) and dividend-yield ratio (dy), are highly correlated with each other. For example, 

the correlation between the dividend-price ratio and the dividend-yield ratio is 0.99. While the correlation matrix 

is a simple statistical device, the insights it provides are profound. For instance, the poor performance of the 

OLS-estimated, “kitchen-sink” multivariate regression model comprising all available predictors in Goyal and 

Welch (2008), may be attributed to the fact that many regressors the model contains are highly correlated with 

each other as shown in Figure 1 for monthly data. 

 

Figure 2. Equity premium forecasts with two-stage forecast combination 

Note. Monthly forecasts generated by the recursive estimation window from January 1947 to December 2016. Each plot displays forecasts 

for a particular double-averaged model named by the weighting scheme used in the first stage of model construction. 

 

3.2 Equity Premium Forecasts and Forecast Evaluation 

3.2.1 Graphical Analysis 

We start by providing a visual impression of the monthly out-of-sample forecasts. Figure 2 presents time-series 

plots of the monthly forecasts of the equity premium from January 1947 to December 2016 for the four 

two-stage forecast combination weights, namely, the Mallows (Cp), Schwarz information criterion (SIC), 

discounted mean squared forecast error (DMSFE) and equal weights. Overall, the patterns of all forecasts look 

quite similar to each other. Comparing with the results from bivariate regression models provided in Rapach et al. 

(2010), we find that forecasts from the two-stage model averaging are smoother and less volatile over the entire 

evaluation period. In addition, a closer examination of Figure 2 suggests that most volatilities of the equity 

premium forecasts concentrate on a few time periods, for instance, the oil shock of the mid-1970s, the Great 

Moderation of the mid-1980s, and the 2008-2009 global financial crisis. All of the aforementioned empirical 

features associated with the double-averaged model, namely, forecast stability and clustered volatility, are not 

reflected in the forecasts from bivariate models originally analyzed in Goyal and Welch (2008). 
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Figure 3. Comparison of equity premium forecasts 

Note. Monthly forecasts from the double-averaged model with Mallows weights are represented by the solid line named CP, while those from 

the simple forecast combination are denoted by the dashed line titled RSG. All forecasts are generated by the recursive estimation window 

with data from January 1947 to December 2016. 

 

Comparing with predictions from the simple forecast combination in Rapach et al. (2010), in Figure 3, we 

present time-series plots of the forecasts generated by the Mallows-weights based double-averaged model (solid 

line denoted by CP) and those from the simple one-step forecast combination (dashed line denoted by RSG) 

proposed in Rapach et al. (2010) for monthly data from 1947 to 2016. Figure 3 shows that forecasts from the 

double-averaged model are more volatile than those from the simple forecast combination during periods of 

financial crisis. For example, the forecasts from the double-averaged model are more volatile than the simple 

combination forecasts during the 2008-2009 financial crisis. This may be attributed to the fact that the two-stage 

forecast combination explicitly takes into account the possible presence of structural breaks which are more 

likely to occur during periods of economic crisis. 

Next, we present the time-series plots of the cumulative differences between the squared forecast error of the 

historical mean and that from the two-stage forecast combination in Figures 4, 5 and 6, for monthly, quarterly 

and annual data, respectively, from 1947 to 2016. 

Regarding monthly results, all panels in Figure 4 display CDSFE time series curves which are positively sloped 

for the most part of the evaluation window. All four weighting schemes demonstrate similar results. Two points 

are worth emphasizing here. First, all curves are strongly positively sloped roughly between 1970 and 1987, 

implying remarkably superior statistical performance for the double-averaged model relative to the benchmark. 

Note that some events, such as the oil shock and great moderation, occurred during this period of time. Second, 

the quality of forecasts from double-averaged models somehow deteriorates roughly between 2000 and 2008, 

however, they regain dominance over the benchmark after 2008. This phenomenon may be explained by the 

linkage between equity premium prediction and the real economy. Historically, Fama and French (1989) and 

Cochrane (1999) view that rising risk aversion during economic recessions requires a higher risk premium. 

Rapach et al. (2010) further argue that out-of-sample gains accruing to successful returns forecasts are often 

clustered in relatively extreme periods of economic expansion. Our approach reinforces their arguments by 

showing extraordinary gains relative to the benchmark during the 2008-2009 financial crisis, as reflected by a 

sharp jump in the curves right before the year 2010 in Figure 4. 
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Figure 4. Monthly Cumulative Difference in Squared Forecast Error (CDSFE) 

Note. At any time period, if the CDSFE curve moves up, it implies that the forecasting model outperforms the benchmark by having a 

smaller prediction error rate. Each plot displays CDSFE for a particular double-averaged model named by the weighting scheme used in the 

first stage of model construction. All forecasts are generated by the recursive window with data from 1947 to 2016. 

 

Quarterly and annual results shown in Figures 5 and 6 are qualitatively similar to those revealed in monthly data: 

the two-stage forecast combination can lead to significant statistical gains during the 1970s, 1980s, and the 

2008-2009 global financial crisis. In stark contrast to the results reported in Goyal and Welch (2008) and Rapach 

et al. (2010), generally, all CDSFE curves presented here are predominantly positively sloped over the entire 

evaluation period, especially for the monthly forecasts, suggesting that the two-stage forecast combination could 

deliver predictive gains on a considerably more consistent basis over time than the historical mean and bivariate 

predictive regressions. 

 

Figure 5. Quarterly Cumulative Difference in Squared Forecast Error (CDSFE) 

Note. At any time period, if the CDSFE curve moves up, it implies that the forecasting model outperforms the benchmark by having a 

smaller prediction error rate. Each plot displays CDSFE for a particular double-averaged model named by the weighting scheme used in the 

first stage of model construction. All forecasts are generated by the recursive window with data from 1947 to 2016. 
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Figure 6. Yearly Cumulative Difference in Squared Forecast Error (CDSFE) 

Note. At any time period, if the CDSFE curve moves up, it implies that the forecasting model outperforms the benchmark by having a 

smaller prediction error rate. Each plot displays CDSFE for a particular double-averaged model named by the weighting scheme used in the 

first stage of model construction. All forecasts are generated by the recursive window with data from 1947 to 2016. 

 

3.2.2 Statistical Performance 

In this section, we evaluate and compare the statistical gains based on the out-of-sample 𝑅𝑂𝑆
2  statistic. We begin 

forecast 20 years after the first available observation, so the evaluation period runs from 1947 to 2016 for all data 

horizons. Furthermore, to check the robustness of all predictive models to the choice of out-of-sample split, we 

consider three subsamples beginning 40 years, 60 years and 80 years after the first available observation. All 

results are reported in Table 2. 

In Table 2, in each panel of data frequency, we present empirical results for four evaluation periods. Within each 

panel, the first four columns present results from the two-stage forecast combination: Mallows weights, SIC 

weights, DMSFE weights and equal weights, denoted by CP, SIC, DMSFE and EQUAL, respectively. The fifth 

column, titled RSZ, reports out-of-sample performance of the simple forecast combination proposed in Rapach 

et al. (2010), that is, the forecasts constructed by simply averaging all 14 stable linear bivariate models in Eq. (1). 

For the remaining columns, they are out-of-sample results from several simple linear bivariate models originally 

considered in Goyal and Welch (2008), with each column titled by the name of the unique variable it contains. 

We begin by examining the performance of all the bivariate models. Overall, the vast majority of the 𝑅𝑂𝑆
2  is 

negative for all models across evaluation samples and forecast horizons. Only a few models report positive 

values of 𝑅𝑂𝑆
2 , but they are weak and inconsistent. This implies that the empirical performance of the simple 

bivariate models considered in Goyal and Welch (2008) is still weak and unreliable when predicting the equity 

premium even with extended data.  

Next, we turn attention to the empirical performance of the simple combination proposed in Rapach et al. (2010). 

Our results show that the simple averaged forecast, which is the arithmetic mean of the forecasts of all 14 stable 

linear bivariate models, indeed improves upon bivariate predictions, as its 𝑅𝑂𝑆
2  values are positive across all 

cases, with the exception of two instances with quarterly data. However, the improvement delivered by the 

simple combination is somewhat weak relative to the benchmark, as the gains in terms of the MSFE reduction is 

less than 0.1% for all cases. 

Finally, in Table 2, our results show that the two-stage forecast combination significantly improves predictive 

performance when forecasting the equity premium, relative to not only the benchmark but also the simple 

forecast combination. Overall, all four weighting schemes have achieved more than 1% reduction in MSFE 

relative to the prevailing mean across all evaluation samples and horizons. For example, the maximum MSFE 

reduction, 10.661%, comes from the DMSFE method with annual data from 1967 to 2016, while the minimum 

MSFE reduction, 1.585%, is reported for the DMSFE method with quarterly data in the 1987-2016 subsample. 
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Turning to the comparison among the four weighting schemes within the two-stage model averaging framework, 

for monthly and quarterly forecasts, all SIC, DMSFE and EQUAL weights demonstrate similar performance 

over all subsamples. However, their performances become weaker when assessed at the end of the evaluation 

sample than those from the full sample. For example, the SIC method reports 𝑅𝑂𝑆
2  value of 3.267% when 

evaluated over the full monthly sample from 1947 to 2016, nevertheless, its 𝑅𝑂𝑆
2  value drops to 1.724% when 

evaluated over the smallest subsample period, 2007-2016. Surprisingly, Mallows weights demonstrate consistent 

gains across all subsamples, and seemingly are more robust to the subsample choice than the other three methods. 

As to yearly data, all four schemes exhibit even stronger forecasting performance than their counterparts in other 

horizons, as they achieve more than 4% reduction in MSFE across all evaluation samples. 

Overall, our empirical results in Table 2 suggest that, when facing the uncertainty of structural breaks, the 

two-stage forecast combination could offer a robust way to significantly improve out-of-sample performance 

relative to many competing alternatives. Furthermore, our approach provides a clear linkage between structural 

break and model averaging, as break models are explicitly included in the construction of the double-averaged 

model. 

 

Table 2. Out-of-sample forecast performance 

Panel A: Monthly CP SIC DMSFE EQUAL RSZ DY DP EP DE 

1947-2016 3.491 3.267 3.302 3.266 0.027 -0.002 -0.053 -0.031 -0.008 

1967-2016 3.742 3.756 3.766 3.758 0.031 -0.004 -0.023 -0.007 -0.008 

1987-2016 1.814 1.787 1.927 1.789 0.012 -0.021 -0.030 -0.021 -0.004 

2007-2016 2.563 1.724 1.942 1.722 0.008 -0.006 0.001 -0.005 -0.009 

Panel B: Quarterly CP SIC DMSFE EQUAL RSZ DY DP EP DE 

1947-2016 3.550 4.056 4.010 4.069 0.052 -0.064 -0.195 -0.167 -0.016 

1967-2016 6.170 7.338 7.527 7.374 0.061 -0.046 -0.085 -0.056 -0.014 

1987-2016 3.371 2.000 1.585 1.996 -0.001 -0.121 -0.119 -0.138 -0.017 

2007-2016 4.517 2.746 3.756 2.746 -0.013 -0.030 0.010 -0.147 -0.030 

Panel C: Annual CP SIC DMSFE EQUAL RSZ DY DP EP DE 

1947-2016 5.747 5.744 6.091 5.720 0.073 -0.069 -0.442 -0.269 -0.060 

1967-2016 6.581 9.506 10.661 9.595 0.085 -0.091 -0.217 -0.148 -0.015 

1987-2016 4.951 4.391 4.716 4.378 0.061 -0.254 -0.312 -0.384 0.158 

2007-2016 5.021 5.231 8.057 5.230 0.060 -0.051 0.103 -0.517 0.353 

Note. This table reports the out-of-sample 𝑅𝑂𝑆
2  for the monthly, quarterly and annual equity premium forecasts. The 𝑅𝑂𝑆

2  of Campbell and 

Thompson (2008) measures the percent reduction in mean squared forecast error for a particular predictive model with name given in the 

first row of each panel relative to the benchmark. For each data frequency, we consider four forecast evaluation periods. In each panel, the 

first five columns report results for the forecast combinations while the rest are for simple linear bivariate models. CP: Mallows weights; SIC: 

Schwarz Information Criterion weights; DMSFE: discounted mean squared forecast error weights with discount factor 𝜃 = 1; EQUAL: 

equal weights; RSZ: simple forecast combination considered in Rapach et al. (2010); DY, dividend-yield; DP, dividend-price ratio; EP, 

earnings-price ratio; DE, dividend-payout ratio. 

 

3.2.3 Discussion 

Rapach et al. (2010) conclude that forecast combination appears useful in equity prediction because it can 

sizably reduce predictive variance while including information from all available economic and financial 

predictors. They also suggest that the efficacy of forecast combination ultimately comes from the highly complex 

and constantly evolving environment generating the equity returns. These authors claim that combining forecasts 

by using schemes such as equal weights could consistently outperform the empirically hard-to-beat historical 

average. 

Our main contribution is to show that, the two-stage forecast combination can substantially further improve the 

out-of-sample forecasting performance in terms of statistical gains consistently compared with the simple 

forecast combination. Not only can we obtain more statistical gains than the empirically difficult-to-beat 

historical mean, but also our approach is shown to be empirically superior to the simple, one-step forecast 

combination based on arithmetic mean originally analyzed in Rapach et al. (2010).  

In addition, our empirical results are robust to the evaluation sample choice. The gains could come from the fact 

that the two-stage forecast combination explicitly accounts for the possible presence of parameter instabilities in 

predictive models. Comparing with the results reported in Rapach et al. (2010) and Goyal and Welch (2008), our 

approach explicitly addresses the uncertainty regarding both model selection and parameter instability. 
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Comparing our results with those in related studies such as Rapach et al. (2010) and Pettenuzzo et al. (2014), 

first we have explicitly provided the linkage between forecast combination and parameter instability as break 

specifications are included in the double-averaged model, thus better explaining the efficacy of model averaging 

in a non-stationary environment on solid theoretical grounds. Second, our methodology of two-stage forecast 

combination can be easily implemented in empirical applications following conventional econometric procedure 

in contrast to complex methods such as Bayesian model averaging which requires imposing priors on both 

candidate models and parameters.     

3.3 Expansion and Recession Analysis 

Following related literature such as Rapach et al. (2010) and Pettenuzzo et al. (2014), we are interested in 

examining the forecasting performance of the two-stage combination by investigating separately for the 

expansion and recession periods as defined by the National Bureau of Economic Research (NBER) indicator for 

monthly and quarterly data. For the sake of brevity, we only compare and evaluate the performance of the four 

weighting schemes within two-stage forecast combination. The results are reported in Table 3. 

Consistent with similar findings documented in related studies such as Pettenuzzo et al. (2014) and Li and 

Tsiakas (2017), all four weighting schemes perform better during recessions than during expansions in terms of 

the 𝑅𝑂𝑆
2  statistic. For monthly forecasts, all methods achieve about 2.6% in MSFE reduction relative to the 

prevailing mean during expansions. However, they obtain more than 5% gains in terms of MSFE reduction 

during recessions, with the Mallows weights achieving the largest reduction of about 5.5%. 

 

Table 3. Recession-expansion analysis 

Panel A: Monthly Data CP SIC DMSFE EQUAL 

Recession 5.507 5.079 5.091 5.076 

Expansion 2.763 2.613 2.657 2.612 

Panel B: Quarterly Data CP SIC DMSFE EQUAL 

Recession 5.225 5.767 5.598 5.786 

Expansion 2.684 3.171 3.189 3.181 

Note. This table reports the out-of-sample 𝑅𝑂𝑆
2  for four double-averaged models during recession and expansion periods defined by the 

National Bureau of Economic Research indicator for monthly and quarterly data. The 𝑅𝑂𝑆
2  measures the percent reduction in mean squared 

forecast error for a particular predictive model with name given in the first row of each panel relative to the historical average benchmark. 

CP: Mallows weights; SIC: Schwarz Information Criterion weights; DMSFE: discounted mean squared forecast error weights with discount 

factor 𝜃 = 1; EQUAL: equal weights. The evaluation period runs from 1947 to 2016. 

 

For quarterly forecasts, almost all weighting methods uniformly improve upon their counterparts in monthly 

prediction by achieving more statistical gains in terms of MSFE reduction. Nevertheless, the empirical fact that 

all weighting schemes perform better during recessions than during expansions remains. 

4. Economic Value Evaluation 

The economic value of equity-related forecasts is frequently evaluated based on the portfolio returns generated 

by predictive regressions. Following related studies such as Baetje and Menkhoff (2016), in this section we 

assess the economic value of the excess returns forecasts in the context of the optimal portfolio decision of a 

mean-variance investor. In each period, the investor rebalances a portfolio comprising a risky asset, the S&P 500 

index approximating the aggregate equity returns, and a risk-free asset, the 3-month Treasury bill. 

4.1 Framework 

In each period t, the investor solves the problem of optimal portfolio decision, 

max𝑤𝑡
𝐸,𝑈(𝑤𝑡 , 𝑟𝑡+1)|𝐼𝑡-,                               (21) 

where 𝑈(𝑤𝑡, 𝑟𝑡+1) is the mean-variance utility function depending on weight 𝑤𝑡  for the equity. 𝐼𝑡  is the 

information set available at time t. The solution to the optimal portfolio decision problem is: 

𝑤𝑡
∗ =

𝑟𝑡+1−𝑟𝑓𝑡+1

𝛾𝜎𝑡
2 ,                                  (22) 

where 𝑟𝑓𝑡+1 is the risk-free rate for period t + 1 and is known in time t, 𝛾 is the coefficient of relative risk 

aversion, 𝑟𝑡+1 is the risky asset returns in period t + 1, and 𝜎𝑡
2 is the variance of the risky asset returns at time t. 

Empirically, we use one-step ahead forecast �̂�𝑡+1  from predictive models to replace 𝑟𝑡+1 . Turning to the 

unknown variance of risky asset, 𝜎𝑡
2, we can estimate it based on all the available data up to time t to obtain �̂�𝑡

2 

following the conventional statistical procedure. 
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Next, we compute the realized portfolio returns for each period in the evaluation sample according to 

𝑝𝑡+1 = 𝑤𝑡
∗𝑟𝑡+1 + (1 − 𝑤𝑡

∗)𝑟𝑓𝑡+1.                          (23) 

When evaluating economic significance, we use the certainty equivalent return (CER) to measure the economic 

value of various forecast combination methods. Specifically, 

𝐶𝐸𝑅 = �̅� −
𝛾

2
𝜎𝑝

2,                                 (24) 

where �̅� and 𝜎𝑝
2 are the sample average and sample variance of the portfolio returns, respectively.  

The relative CER can be taken as a portfolio management fee that a mean-variance investor with a relative 

risk-aversion coefficient 𝛾, is willing to pay to gain access to the information embedded in the averaged model 

rather than that in the historical average. In what follows, all reported values of CER are annualized, so that they 

can be understood as an annualized percentage portfolio management fee. 

In addition, we also assess the economic performance by Sharpe ratio, which is a widely used measure to 

evaluate portfolio performance, and is defined as the average equity premium of a portfolio divided by its 

standard deviation. 

 

Table 4. Annualized certainty equivalent returns 

Panel A: Monthly Data CP SIC DMSFE EQUAL 

1947-2016 0.639 0.617 0.621 0.617 

1967-2016 0.803 0.821 0.824 0.822 

1987-2016 0.423 0.410 0.431 0.410 

2007-2016 0.679 0.499 0.540 0.499 

Panel B: Quarterly Data CP SIC DMSFE EQUAL 

1947-2016 0.294 0.344 0.337 0.345 

1967-2016 0.634 0.736 0.746 0.740 

1987-2016 0.324 0.195 0.159 0.194 

2007-2016 0.559 0.345 0.451 0.345 

Panel C: Annual Data CP SIC DMSFE EQUAL 

1947-2016 0.426 0.428 0.449 0.427 

1967-2016 0.545 0.812 0.884 0.820 

1987-2016 0.217 0.253 0.258 0.254 

2007-2016 0.612 0.641 0.921 0.641 

Note. This table reports certainty equivalent return (CER) values in percentage for portfolios based on recursive out-of-sample forecasts of 

the equity premium using the two-stage forecast combination approach. CER values are annualized and measured relative to the prevailing 

mean benchmark, and can be interpreted as an annualized percentage portfolio management fee. For each data frequency, we consider four 

forecast evaluation periods. The coefficient of the relative risk aversion is set at five. Each model is named by the weighting scheme used in 

the first stage of constructing forecasts. CP: Mallows weights; SIC: Schwarz Information Criterion weights; DMSFE: discounted mean 

squared forecast error weights with discount factor θ=1; EQUAL: equal weights. 

 

4.2 Economic Performance 

Table 4 reports the annualized CER gains in percentage for all double-averaged models relative to investing 

based on the historical average. In all cases, the relative risk aversion coefficient is 𝛾 = 5. The full sample spans 

from 1947 to 2016. Moreover, we also consider three subsamples starting in 1967, 1987 and 2007, respectively. 

We investigate the economic performance for all four weighting schemes when combining the stable and break 

models within the framework of two-stage forecast combination. Empirical results are provided for all data 

horizons. 

For monthly results shown in Panel A of Table 4, all four weighting methods have achieved more than 0.6% 

CER gains relative to the prevailing mean over the entire evaluation sample. The CP reports the largest gains of 

0.639%. The economic gains also carry over to three subsamples. Moreover, there is no empirical evidence 

suggesting that the economic benefits obtained from forecast combination deteriorate over time, particularly for 

the model based on Mallows weights. For example, the smallest subsample beginning in 2007 reports a higher 

relative CER value of 0.679% than that from the full sample. Furthermore, Mallows weights deliver better 

economic gains than other methods when forecasting monthly returns following the 2008-2009 financial crisis. 

At the quarterly horizon shown in Panel B of Table 4, all forecast combination methods deliver superior 

economic benefits relative to the benchmark across all samples. However, for each method at a given period, the 

economic gains are uniformly smaller than their counterparts in Panel A with monthly data. Finally, at the annual 
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horizon, like previous results, all combination methods report positive economic gains consistently over time. 

The DMSFE model reports the largest CER gains of 0.921% when forecasting the last 10 years of annual 

returns. 

Table 5 reports the values of annualized Sharpe ratio for all weighting schemes within the two-stage model 

averaging framework, across different horizons of data and evaluation samples. Overall, the results in Table 5 

qualitatively confirm our previous findings: (1) the two-stage model averaging can consistently deliver superior 

economic gains relative to the historical mean; (2) longer-horizon returns seem harder to predict than 

shorter-horizon returns; and (3) the DMSFE weights seem to forecast long-term returns better than other 

schemes. 

 

Table 5. Annualized sharpe ratio 

Panel A: Monthly Data CP SIC DMSFE EQUAL 

1947-2016 0.432 0.406 0.409 0.406 

1967-2016 0.486 0.494 0.496 0.494 

1987-2016 0.238 0.235 0.244 0.235 

2007-2016 0.348 0.283 0.302 0.282 

Panel B: Quarterly Data CP SIC DMSFE EQUAL 

1947-2016 0.224 0.251 0.248 0.251 

1967-2016 0.444 0.478 0.480 0.479 

1987-2016 0.203 0.124 0.103 0.124 

2007-2016 0.395 0.265 0.372 0.266 

Panel C: Annual Data CP SIC DMSFE EQUAL 

1947-2016 0.143 0.147 0.150 0.147 

1967-2016 0.166 0.223 0.239 0.225 

1987-2016 0.067 0.071 0.072 0.071 

2007-2016 0.157 0.234 0.405 0.236 

Note. This table reports the annualized Sharpe ratio values for portfolios based on recursive out-of-sample forecasts of the equity premium 

using the two-stage forecast combination approach. The numbers are Sharpe ratio gains for trading strategies timing the market relative to the 

historical average benchmark. For each data frequency, we consider four forecast evaluation periods. Each model is named by the weighting 

scheme used in the first stage of constructing forecasts. CP: Mallows weights; SIC: Schwarz Information Criterion weights; DMSFE: 

discounted mean squared forecast error weights with discount factor θ=1; EQUAL: equal weights. 

 

5. Conclusion 

This paper has extended the methodology of forecast combination when predicting the equity premium 

out-of-sample in a non-stationary environment. To address the uncertainty on both model selection and 

parameter instability, we propose a two-stage forecast combination approach: first, we combine the break and 

stable specifications of each baseline model using one of the four proposed weighting schemes, namely, equal 

weights, DMSFE weights, SIC weights and Mallows weights; next, we combine all averaged models obtained 

from the previous step to form a double-averaged model using equal weights. Empirically we apply the 

two-stage forecast combination to forecasting the aggregate equity premium in the context of our-of-sample 

analysis. Our main finding is that the double-averaged model, particularly the one based on Mallows weights, 

could potentially deliver significant statistical and economic gains relative to the simple forecast combination 

considered in Rapach et al. (2010), and the historical average. 

Our methodology is restricted to the context of combining linear models, thus it would be greatly desirable to 

broaden the scope by considering more diverse model types. Another unexplored issue is statistical inference. As 

of the writing of this paper, to the best of our knowledge it is unclear how to rigorously test the significance of 

the 𝑅𝑂𝑆
2  for averaged models in a non-stationary environment, as the relaxation of stationarity complicates the 

derivation of asymptotic results. This is a challenging yet important topic for future investigation. 
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