Medical Data Mining Based on Association Rules
- Ruijuan Hu
Abstract
Detailed elaborations are presented for the idea on two-step frequent itemsets Apriori algorithm of Association Rules. An improved method called Improved Apriori algorithm is brought forward owing to the disadvantages of Apriori algorithm. Moreover, based on Improved Apriori algorithm, data mining for breast-cancers is carried out for the relationship between breast-cancer recurrences and other attributes by making use of SQL Server 2005 Analysis Services. Results show the availability of Association Rules in medical data mining.
- Full Text: PDF
- DOI:10.5539/cis.v3n4p104
Journal Metrics
WJCI (2022): 0.636
Impact Factor 2022 (by WJCI): 0.419
h-index (January 2024): 43
i10-index (January 2024): 193
h5-index (January 2024): N/A
h5-median(January 2024): N/A
( The data was calculated based on Google Scholar Citations. Click Here to Learn More. )
Index
- Academic Journals Database
- BASE (Bielefeld Academic Search Engine)
- CiteFactor
- CNKI Scholar
- COPAC
- CrossRef
- DBLP (2008-2019)
- EBSCOhost
- EuroPub Database
- Excellence in Research for Australia (ERA)
- Genamics JournalSeek
- Google Scholar
- Harvard Library
- Infotrieve
- LOCKSS
- Mendeley
- PKP Open Archives Harvester
- Publons
- ResearchGate
- Scilit
- SHERPA/RoMEO
- Standard Periodical Directory
- The Index of Information Systems Journals
- The Keepers Registry
- UCR Library
- Universe Digital Library
- WJCI Report
- WorldCat
Contact
- Chris LeeEditorial Assistant
- cis@ccsenet.org