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Abstract 

Detailed elaborations are presented for the idea on two-step frequent itemsets Apriori algorithm of Association 
Rules. An improved method called Improved Apriori algorithm is brought forward owing to the disadvantages of 
Apriori algorithm. Moreover, based on Improved Apriori algorithm, data mining for breast-cancers is carried out 
for the relationship between breast-cancer recurrences and other attributes by making use of SQL Server 2005 
Analysis Services. Results show the availability of Association Rules in medical data mining. 
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1. Introduction 

The application of computer information technology in medical promotes the digitalization of medical 
information, so amount of hospital database information is perpetual expanding. The database within the medical 
treatment of most hospitals is low-end operations at present, lacking data integration and analysis, letting alone 
mine deeper, implicit and valuable knowledge in the large amount of data resources. In this context, medical data 
mining came into being (Daniel, 2008, pp. 77-102). 

As is well known, many algorithms including Association Rules, Decision Tree and Clustering for data mining 
were presented over time. A trial of medical data mining was made on 285 cases of breast disease patients in HIS 
(Hospital Information System) using Association Rules algorithm. 

2. Medical data mining based on Association Rules 

In data mining, association rule learning is a popular and well researched method for discovering interesting 
relations between variables in large databases. Many algorithms for generating association rules were presented 
over time. Some well known algorithms are Apriori, DHP and FP-Growth. Apriori is the best-known algorithm 
to mine association rules. 

2.1 Apriori algorithm 

Apriori is a fast mining algorithm first introduced by R.Agrawal et al for market basket data analysis (R. Agrawal, 
1993, pp. 207-216). It uses a breadth-first search strategy to counting the support of itemsets and uses a 
candidate generation function which exploits the downward closure property of support. It is a set of ideas based 
on the frequency of two-stage approach which can be decomposed into two sub-problems (Sriphaew K, 2003, pp. 
476-484). First, find all Frequent Itemsets that have transaction supports above minimum support called minsup. 
The support for an itemset is defined as the fraction of total transactions that contains this itemset. Itemsets with 
minimum support are called large itemsets, and all the others small itemsets. Second, use the large itemsets to 
generate the desired rules with the recursive method. There is a straightforward algorithm for this task. 

Its core idea is as follows (Rakesh Agrawal, 1994, pp. 487-499): 

C1= {candidate 1-itemsets} 

L1={ cC1| c.count minsup }; 

for (k=2; Lk-1  ; k++) do begin          

Ck=apriori_gen (Lk-1);              // New candidates  

for all transaction t D do begin 

Ct=subset (Ck, t);              // Candidates contained in t 

    for all candicates cCt do  

c.count++; 

end 

Lk={ cCk| c.countminsup} 

end 
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Answer= k Lk; 

The first pass of the algorithm simply counts item occurrences to determine the large 1-itemsets. A subsequent 
pass, say pass k, consists of two phases. First, the large itemsets Lk-1 found in the (k-1)th pass are used to 
generate the candidate itemsets Ck using the apriori-gen function described below. Next, the database is scanned 
and the support of candidates in Ck is counted.  

The apriori_gen function (Mohammed J., 2000, pp. 372-390) takes as argument Lk-1, the set of all large 
(k-1)-itemsets. The function works as follows. 

Procedure apriori_gen (Lk-1: frequent (k-1) _itemsets; minsup) 

for each itemset p  Lk-1 

     for each itemset q  Lk-1 

      if (p.item1= q.item1)   (p.item2= q.item2) …  (p.itemk-2= q.itemk-2) then 

      {c=p q 

       if has_infrequent_subset (c, Lk-1) then 

       delete c 

       else add c to Ck; 

         } 

return Ck; 

Procedure has_infrequent_subset (c: candidate k_itemsets; Lk-1_itemsets) 

for each s (k-1) subsets of c 

if s   Lk-1 then 

return true; 

return false; 

In this algorithm, k_itemsets means itemsets which include k sets; Lk means all k_itemsets which are greater 
than minimum support, which is large k_itemsets; Ck means k_itemsets which meet the following conditions: 
each (k-1) _itemsets subset of k_itemsets belongs to Lk-1, and it is generally called the candidate sets. The 
algorithm mainly consists of two steps: generate candidates Ck and count the candidate sets. Generating 
candidates also can be divided into two stages (M. J. Zaki., 2001, pp. 31-60): 

(1)Connection: Merge the two equal (k-1) _itemsets of pre-k-2 sets in Lk-1, resulting in candidate k itemsets. 

(2)Delete: Delete the (k-1) subsets of Ck not belonging to Lk-1. 

The efficiency of the algorithm lies in its use of large itemsets’ closure. It greatly reduces the number of itemsets 
needing to calculate the degree of support, namely, it avoids the calculation of those which can not become a 
large set of candidate sets.  

2.2 Improved Apriori algorithm  

In Apriori algorithm all the candidate itemsets with the same length must be stored in the memory, which results 
in a waste of space. To generate large itemsets, the database is passed as many times as the length of the longest 
large itemsets. Namely, the database is scanned and the support of each candidate itemset is counted after the 
new candidate itemsets are generated, which results in a waste of time for large database. This is the performance 
bottleneck of Apriori algorithm. 

The basic idea of the improved algorithm (Zelic I, 2000, pp. 799-803) (J. Han, 1992, pp. 547-559) is proposed 
according to the above deficiencies. In the improved algorithm, which is fundamentally different from Apriori, 
we need not store all the candidate itemsets in the memory and pass over the database only once. Find out all the 
high frequency 1-dimensional data itemsets L1, and then L1 is used to identify all the high frequency 
2-dimensional data itemsets L2, what’s more, use L2 to find C2, the rest may be deduced by analogy until no new 
high frequency itemsets exist. The realization from Lk-1 to Lk is connecting Lk-1 and its own to generate a 
candidate set of k-dimensional set of data itemsets, denoted by Ck, and then counting the frequency of Ck's data 
itemsets, discarding low-frequency data itemsets, forming Lk. The connection process is taking out p and q from 
Lk-1. If p and q are the same as the pre-k-2 items, make a connection (S. Muggleton, 1992). The improved 
function apriori-gen is as follows: 
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Procedure apriori_gen (Lk-1: frequent (k-1) _itemsets; minsup) 

for each itemset p  Lk-1 

     for each itemset q  Lk-1 

      if (p.item1= q.item1)   (p.item2= q.item2) …  (p.itemk-2= q.itemk-2) then 

      { c=p q 

       for each itemset p  Lk-1      //scan all elements of Lk-1 

          for each itemset c  Ck          // scan all elements of Ck 

  if p is the subset of c then    //determine whether each element of Lk-1 contains Ck       

  c.count++; 

           Ck={cCk| c.count =k}; 

         } 

return Ck; 

In order to reduce the size of candidate sets, the improvement is set proposed. Suppose |L k-1| indicate the number 
of data itemsets in L k-1, p=|C k| indicate the number of data itemsets in C k. From the knowledge of sets, we can 
see, the number of n elements set’s subsets is 2n. Therefore, the original algorithm needs a total of 2 p *|L k-1| 
times operations. The new algorithm just need p*(|L k-1|+1) times operations.  

The improved algorithm has the excellent property that the database is not used repeatedly. Rather, the encoding 
of the database is employed for judging whether a candidate is a large itemset. In the later passes, the size of this 
encoding can become much smaller than the database, thus saving much reading effort (Carlos Ordonez, 2000, 
pp. 78-85). Obviously the improved algorithm is superior when the number of data itemsets continuously 
increases. 

2.3 Realization of medical data mining 

2.3.1 Data preparation 

A trial of medical data mining is made on 285 cases of breast disease patients provided by Puyang City People’s 
Hospital HIS (Hospital Information System), of which 201 cases of no-recurrence-events, 84 cases of 
recurrence-events. Through communicating with doctors and learning the knowledge of pathology, we extract 8 
attributes of patients as the attributes of each case: Age, Tumor-size (unit: mm) , the number of lymph node 
invasion (Inv-nodes) , whether Node-caps (Node-caps) are, malignant degree (Deg-malig) , tumor location 
(Breast) , where is the quadrant tumor (Breast-quad) , radiotherapy or not (Irradiat) , whether recurrence-events 
or no-recurrence-events (Class). Establish the relationships of Class and other attributes through data mining. 
The concrete settings of attributes are as follows: 

age{‘10-19’, ‘20-29’, ‘30-39’, ‘40-49’, ‘50-59’, ‘60-69’, ‘70-79’, ‘80-89’, ‘90-99’} 

tumor-size{‘0-4’, ‘5-9’, ‘10-14’, ‘15-19’, ‘20-24’, ‘25-29’, ‘30-34’, ‘35-39’, ‘40-44’, ‘45-49’, 
‘50-54’,’55-59’} 

inv-nodes{‘0-2’, ‘3-5’, ‘6-8’, ‘9-11’, ‘12-14’, ‘15-17’, ‘18-20’, ‘21-23’, ‘24-26’,’27-29’, ‘30-32’, ‘33-35’, 
‘36-39’} 

node-caps {‘yes’, ‘no’} 

deg-malig {‘1’, ‘2’, ‘3’} 

breast {‘left’, ‘right’} 

breast-quad {‘left-up’, ‘left-low’, ‘right-up’, ‘right-low’, ‘central’} 

irradiat {‘yes’, ‘no’} 

Class {‘no-recurrence-events’, ‘recurrence-events’} 

According to the attributes, we build the breast-cancer database of the cases by making use of SQL Server 2005. 

2.3.2 Concrete realization  

The steps of data mining using SQL Server 2005 Analysis Services for the realization of Association Rules are as 
follows (Zhu Deli. 2007, Chapter 11): 

Step 1: Select the breast-cancer database created previously as the data source, and set up a data source view. 
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Step 2: Create Association Rules mining structure, and select breast-cancer table as the instance table, that is, the 
data contained in the table is the historical data relied on the analysis of algorithm. 

Step 3: Create the mining model structure. Establish the mining model between the attributes of Class and Age, 
Tumor-size, Inv-nodes, Deg-malig, Irradiat according to the defined question what factors tumor recurrence is 
related to. 

Step 4: Generate the mining results. 

3. Analysis of the mining results 

Realize Association Rules algorithm by making use of SQL Server 2005 Analysis Services. Several illustrations 
of Microsoft Association Rules are brought forward. 

(1) Probability is put to use instead of Confidence. 

(2) How to calculate the importance of Association Rules? 

)|(

)|(
logIMPORTANCEA- notABP

ABp
B                             (1) 

(3) Set the parameters of the algorithm. 

The mining rules are shown in Figure 1, which sort on the basis of importance and probability of association. 

The minimum support is 30 and the minimum itemset is 0 in the case. These two values can be set according to 
the actual conditions. The interface shown in Figure 1 is sorting rules mined by data mining algorithm according 
to the probability intensity and the importance degree. As shown in Figure 1, the blue line above represents the 
recurrent probability of the patient whose Tumor-size is 35 to 39 and Age is 30 to 39. Figure 2 shows the 
strength of different Association Rules. To change the intensity level you can see, tumor recurrences most 
happen on the patients who have a great degree of malignancy and no radiotherapy.   

A part of Association Rules are as follows according to the above: 

Rule 1: Tumor-size=‘30-34’ Deg-malig=‘3’Class=‘recurrence-events’ (36.1%, 61.5%); 

Rule 2: Inv-nodes=‘6-8’ Tumor-size=‘40-44’Class=‘recurrence-events’ (41.1%, 100%); 

Rule 3: Inv-nodes=‘3-5’ Deg-malig=‘3’Class=‘recurrence-events’ (44.3%, 100%); 

Rule 4: Inv-nodes=‘9-11’ Irradiat=‘no’Class=‘recurrence-events’ (44.3%, 100%). 

Rule 1 means that 36.1 %( support) of the studied patients’ Tumor-size is 30 to 34mm, Deg-malig  

is ‘3’ (the highest), and the possibility of tumor recurrence is 61.5% (confidence). Rule 2 means that 41.1% 
(support) of the studied patients’ Inv-nodes is 6 to 8, Tumor-size is 40 to 44mm, and the possibility of tumor 
recurrence is 100% (confidence). Rule 3 means that 41.3% (support) of the studied patients’ Inv-nodes is 3 to 5, 
Deg-malig is the highest, and the possibility of tumor recurrence is 100% (confidence). Rule 4 means that 41.3% 
(support) of the studied patients’ Inv-nodes is 9 to 11, and they have no radiotherapy, so the possibility of tumor 
recurrence is 100% (confidence). 

Based on Association Rules, the data mining results show that the higher Tumor-size and Deg-malig, the more 
Inv-nodes, the more chances of recurrence are; patients who have a smaller Tumor-size and receiving 
radiotherapy have a fewer possibilities of recurrence. 

4. Conclusion 

An Improved Apriori algorithm is proposed to reduce the size of candidate sets by studying on Apriori algorithm 
of Association Rules and the deficiencies of Apriori algorithm. Conclusions are made on association rules 
between tumor recurrence and other attributes by doing data mining on breast cancer patients provided by HIS 
using SQL Server 2005 Analysis Services. The results corresponding with the background knowledge of 
diagnosis of breast disease can be used as important references in breast diseases. 
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Figure 1. The result of data mining based on Association Rules 

 
Figure 2. Relationship network of association 


