A Synthetic Player for Ayὸ Board Game Using Alpha-Beta Search and Learning Vector Quantization
- Oluwatobi, Ayilara
- Anuoluwapo, Ajayi
- Kudirat, Jimoh
Abstract
Game playing especially, Ayὸ game has been an important topic of research in artificial intelligence and several machine learning approaches have been used, but the need to optimize computing resources is important to encourage significant interest of users. This study presents a synthetic player (Ayὸ) implemented using Alpha-beta search and Learning Vector Quantization network. The program for the board game was written in Java and MATLAB. Evaluation of the synthetic player was carried out in terms of the win percentage and game length. The synthetic player had a better efficiency compared to the traditional Alpha-beta search algorithm.- Full Text: PDF
- DOI:10.5539/cis.v9n3p1
This work is licensed under a Creative Commons Attribution 4.0 License.
Journal Metrics
WJCI (2022): 0.636
Impact Factor 2022 (by WJCI): 0.419
h-index (January 2024): 43
i10-index (January 2024): 193
h5-index (January 2024): N/A
h5-median(January 2024): N/A
( The data was calculated based on Google Scholar Citations. Click Here to Learn More. )
Index
- Academic Journals Database
- BASE (Bielefeld Academic Search Engine)
- CiteFactor
- CNKI Scholar
- COPAC
- CrossRef
- DBLP (2008-2019)
- EBSCOhost
- EuroPub Database
- Excellence in Research for Australia (ERA)
- Genamics JournalSeek
- Google Scholar
- Harvard Library
- Infotrieve
- LOCKSS
- Mendeley
- PKP Open Archives Harvester
- Publons
- ResearchGate
- Scilit
- SHERPA/RoMEO
- Standard Periodical Directory
- The Index of Information Systems Journals
- The Keepers Registry
- UCR Library
- Universe Digital Library
- WJCI Report
- WorldCat
Contact
- Chris LeeEditorial Assistant
- cis@ccsenet.org