Improving Analysis and Visualizing of JVM Profiling Logs Using Process Mining

  •  Mohamed S. Farag    
  •  M. M. MohieEl Din    
  •  Neveen I. Ghali    
  •  O. M. Hassan    


Growing size and complexity of modern software applications increase the demand to make the information systems self-configuring, self-optimizing and with flexible architecture. Although managed languages have eliminated or minimized many low-level software errors there are many other sources of errors that persist. Java Virtual Machine (JVM), as managed language has many adaptive optimization techniques, which needs tools to analysis program behavior determines where the application spends most of its time. In this paper, new approached has been introduced to use process-mining techniques to represent the analysis and visualize phases of JVM profilers. They are flexible enough to cover so many perspectives in several ways. That can form a unified layer for analysis and visualize across profiling.

This work is licensed under a Creative Commons Attribution 4.0 License.
  • ISSN(Print): 1913-8989
  • ISSN(Online): 1913-8997
  • Started: 2008
  • Frequency: quarterly

Journal Metrics

WJCI (2021): 0.557

Impact Factor 2021 (by WJCI):  0.304

h-index (December 2022): 40

i10-index (December 2022): 179

h5-index (December 2022): N/A

h5-median(December 2022): N/A

( The data was calculated based on Google Scholar Citations. Click Here to Learn More. )