
Computer and Information Science; Vol. 9, No. 1; 2016
ISSN 1913-8989 E-ISSN 1913-8997

Published by Canadian Center of Science and Education

54

Improving Analysis and Visualizing of JVM Profiling Logs Using
Process Mining

M. M. MohieEl Din1, Neveen I. Ghali1, Mohamed S. Farag1 & O. M. Hassan1

1 Department of Mathematics, Facility of Science Al-Azhar University Cairo, Egypt

Correspondence: Mohamed S. Farag, Department of Mathematics, Facility of Science Al-Azhar University,
Nasr city, 11884, Cairo, Egypt. Tel: 20-1006-574-243. E-mail: mohamed.s.farag@azhar.edu.eg

Received: November 23, 2015 Accepted: December 28, 2015 Online Published: January 6, 2016

doi:10.5539/cis.v9n1p54 URL: http://dx.doi.org/10.5539/cis.v9n1p54

Abstract

Growing size and complexity of modern software applications increase the demand to make the information
systems self-configuring, self-optimizing and with flexible architecture. Although managed languages have
eliminated or minimized many low-level software errors there are many other sources of errors that persist. Java
Virtual Machine (JVM), as managed language has many adaptive optimization techniques, which needs tools to
analysis program behavior determines where the application spends most of its time. In this paper, new
approached has been introduced to use process-mining techniques to represent the analysis and visualize phases
of JVM profilers. They are flexible enough to cover so many perspectives in several ways. That can form a
unified layer for analysis and visualize across profiling.

Keywords: JVM profiling, process mining, heuristics miner

1. Introduction

The modern software applications are complicated enough that leads to increasing the demand for automating
the process of managing the software environments that allows developers to identify performance bottlenecks
with minimum effort.

Likewise for the Java Virtual Machine (JVM), as managed language based on interpreter it requires more
processing for execution, and there are several approaches to enhance JVM performance like Just-In-Time
Compilation (JIT), interpretation directly in hardware by specialized architecture and improving JVM
performance by understanding of the behavior of Java-based applications (Bowers & Kaeli, 1998). Optimizing
the compilers and software applications by understanding the dynamic behavior of it; it is an effective approach
(Driesen et al., 2003).

The process of automatic collection and presentation of data that is representing the dynamic behavior of the
program is called profiling (Dmitriev, 2004). After profilers collect and analyze the data, it can be either
automatically feedback to the compiler or present it for the developers. Each case has different requirements in
designing the profiler (Liang & Viswanathan, 1999). For example the feedback profilers should avoid the
“observer effect” program that may affect the program’s behavior (Snyder et al., 2011), while this problem not
critical if profile will just present the result for developers.

From Another Perspective, Process Mining techniques aim to extract non-trivial information from event logs
recorded by information systems. According to their abilities to assist in understanding and (re)design the
complex process by extracting the workflow model that represent the information system behavior, the process
mining techniques have received notable attention and promising vision (Van Der Aalst & Weijters, 2004). ProM
framework is a pluggable environment for process mining. This framework is flexible with respect to the input
and output format, and is also open enough to allow for the easy reuse of code during the implementation of new
process mining ideas (De Medeiros et al., 2005).

This paper is mainly concerned with profilers that provide information about java program or JVM (HotSpotTM);
these profilers mainly have three phases: collecting data, analyzing data and visualizing results. In this paper, the
process mining techniques and ProM tool implemented to represent the analysis and visualize phases. They are
flexible enough to cover so many perspectives in several ways. That can form a unified layer for analysis and
visualize across profiling perspectives. Process mining applied on two different profiling data for java

www.ccsenet.org/cis Computer and Information Science Vol. 9, No. 1; 2016

55

programs/VM, and the result compared with the original profiling tools. The profiling data mapped to
process-based, and with each different mapping new analysis perspective obtained. The DaCapo (Garner et al.,
2006) benchmark suite has been used to apply profiling perspectives on some of its component. In this context,
the java-event-logs tool has been provided to mapping Java profiling data to process mining event logs.

This paper organized as follows. Section 2 provides background information about the profiling data and process
mining. Section 3 describes related work. Section 4 describes the architecture of java-event-logs tool. Section 5
provides a detailed description on how to use process mining during profiling and presenting the experimental
results. Finally, Section 6 concludes and suggests directions for future work.

2. Literature Review

In this section, the profiling data will be dissected and study the existence tool for analysis and visualizing, then
an overview about process mining perspectives and event log format will be discussed.

2.1 JVM Profilers

There are two different profiling data with different perspectives selected to study. The following is a breakdown
of them:

2.1.1 Dependence Graph

The Java HotSpotTM server compiler uses a program dependence graph as the intermediate data structure when
compiling Java bytecodes to machine code. When using the compiler in debug mode, it is providing a textual
output of the graph (Ottenstein et al., 1987; Vick et al., 2001; Wimmer et al., 2008). The Ideal Graph Visualizer
(IGV) tool used to analyze the compiler by providing a graphical representation of the program dependence
graph. During the compilation process, the IGV tool captures snapshots of the graph then use it to create visual
presentation to reconstruct the transformations applied to the graph by compiler optimizations. Figure 1 shows
the interaction between the visualization tool and the server compiler (Würthinger, 2007; Wimmer et al., 2008).
In IGV the data transferred from the server compiler to the visualization tool is represented in XML. Figure 2
shows the XML elements and their relations (Würthinger, 2007).

Figure 1. Interaction between the compiler and the visualization tool

Table 1. Description of the main elements in IGV XML

Element Level Description
graphDocument 1st top-level element and can contain group child elements
group 2nd server compiler creates a group element for every traced method
method 3rd describes the bytecodes and inlining of the method
graph 3rd describe the traced states of the graph during compilation of the method, it include

the state title and starting time.
nodes 4th contain definitions of nodes as node elements or removeNode elements, which state

that a certain node of the previous graph is no longer present
edges 4th contain definitions of edges as edge elements or removeEdge elements, which state

that a certain edge of the previous graph is no longer present
controlFlow 4th contains the information necessary to cluster the nodes into blocks

www.ccsenet.org/cis Computer and Information Science Vol. 9, No. 1; 2016

56

Figure 2. IGV XML elements and their relations

Figure 3 shows the output of the IGV tool, which represents the dependency graph; also, IGV tool supports some
options like filtering the graph component manually or using JavaScript function and display the difference
between snapshots graphically.

Figure 3. Dependence Graph as represented in IGV tool

www.ccsenet.org/cis Computer and Information Science Vol. 9, No. 1; 2016

57

2.1.2 Compilation Logs

The JVM HotSpotTM developers create internal diagnostic option in the JVM itself. The diagnostic options
“-XX: +LogCompilation” emits a structured XML log of compilation related activity during a run of the virtual
machine. By default it ends up in the standard “hotspot.log” file, though this can be changed using the -XX:
LogFile= option. Note that both of these are considered diagnostic options and have to be enabled using -XX:
+UnlockDiagnosticVMOptions (Snyder et al., 2011).

Figure 4 shows very rough overview of the LogCompilation output XML, and Table 2 describes the main
elements in this XML.

Figure 4. Very rough overview of the LogCompilation XML

Table 2. Description of the main elements in LogCompilation XML

Element Level Description
hotspot_log 1st The main element in the XML.
tty 2nd Output from normal Java threads and contains events for methods being

enqueued for compilation, uncommon traps that invalidate a method and other
events.

compilation_log 2nd Comes from the compiler threads themselves. The output from the compiler is
basically a log of the stages of the compile along with the high level decisions
made during the compile such as inlining.

start_compile_thread 3rd Mainly gives a timestamp for the start time of the compiler thread.
task 3rd Methods to be compiled are placed into the compile queue and the compiler

threads dequeue them and compile them as long as there are elements in the
queue. Each individual compile is shown as a 'task' element.

phase 4th Each phase of the compilation is wrapped by a 'phase' element which records
the name of the phase, the maximum number of nodes in the IR at that point
and the timestamp. Phases may nest and may be repeated.

dependency 4th A "dependency" element indicates that class hierarchy analysis has indicated
some interesting property of the classes that allows the compiler to
optimistically assume things like there are no subclasses of a particular class or
there is only one implementor of a particular method.

task_done 4th indicates completion of the compile and includes a 'success' element to
indicate whether the compile succeeded.

www.ccsenet.org/cis Computer and Information Science Vol. 9, No. 1; 2016

58

The LogCompilation tool created to parse the related XML file. This tool is part of the JVM HotSpotTM and
provides textual output. This output provides information about compilation statistics (Number of compilation
tasks, Number of bytes of the compiled method, Compilation type, …) and list the compilation events ordered by
start time or elapsed time. Figure 5 shows sample for the output of this tool.

Figure 5. Sample for the output of the LogCompilation tool

2.1.3 Other Profilers

In (Sewe et al., 2012) the JP2 tool designed to extract the valuable calling context tree without exposure to
analysis or visualize. In each of (Krinke, 2004; Balmas, 2001; Lee & Sim, 2015) specially programmed tools
have been provided to display the program dependence graph. In (Driesen et al., 2003; Hendren et al., 2003) a
new tool has been developed to use the internal JVM profiling APIs for gathering the information about the
program then computing and presenting the results from the standpoint of the dynamic metrics. The
NetBeans/JFluid Profiler (Dmitriev, 2004; Schulz et al., 2015) depends on dynamic bytecode instrumentation
and code hotswapping to turn profiling on and off dynamically. However, this tool needs a customized JVM and
is therefore only available for a limited set of environments. The Spy framework (Banados et al., 2012) builds
profilers and visualizes profiling information for the Pharo-Smalltalk programming language. However, the
limitations of the language reflect on the profiler. There is a wide range of related work in the area of profiling
perspectives and tools; but the common thing across all that there is no unified data model and each tool designs
its analysis and visualize technique which make it hard to integrate.

2.2 Process Mining

The main goal of process mining is to extract the information from the logs of the systems and representing it in
workflow model to reconstruct the order of activities in the form of a graphical model. The basic idea of process
mining is to learn from observed executions of a process (Van der Aalst & Weijters, 2004; Van Dongen et al.,
2007); this used to: Discover new models (e.g., constructing a Petri Net that is able to reproduce the observed
behavior), Check the conformance of a model by checking whether the modeled behavior matches the observed
behavior and Extend an existing model by projecting.

The basic perspective of process mining is the so-called control-flow (process) perspective, which focuses on the
control-flow, i.e., the ordering of activities. However, in addition to that could also consider: the organization
perspective which focuses on which performers are involved and how they are related, and the case perspective
that focuses on properties of cases (Van der Aalst & Weijters, 2004).

Event logs can be very different in nature, i.e. an event log could show the events that occur in a specific
machine that produces computer chips, or it could show the different departments visited by a patient in a
hospital. However, all event logs have one thing in common: they show occurrences of events at specific
moments in time, where each event refers to a specific process and an instance thereof, i.e. a case (Van Der Aalst
& De Medeiros, 2005).

ProM framework (De Medeiros et al., 2005) is a pluggable environment for process mining. Since each system
has its own format for output log files, ProM framework works with a generic XML formats like MXML and
XES (Van Der Aalst & Van Der Aalst, 2011). Regardless the elements name in file formats; there are main
elements for each process that should be represented in any format, these elements listed in Table 3.

Plug-ins in ProM framework can be divided to mining plug-in which implements algorithms that mine models
from event logs, analysis plug-in which typically implement some property analysis on some mining result and
others plug-ins related to file formats input/output. Moreover, ProM has enormous potential in filtration and

www.ccsenet.org/cis Computer and Information Science Vol. 9, No. 1; 2016

59

general statistics about the input event logs.

Table 3. The main elements in the event log

Element Required Description
Case Mandatory Each case has unique ID and includes related actions.
Activity Mandatory The name of the action.
Timestamp Optional The time of the action.
Originator Optional The name of the action performer.

3. Proposed Tool Architecture

In this section, the architecture of java-event-logs tool and the usage of it described in details. XML format is the
common thing between the types of input files and the output files too. So, the XMLBeans library for accessing
XML by binding it to Java types, XMLBeans provides a way to get at the XML through XML schema that has
been compiled to generate Java types that represent schema types, the XML schemas that descript the three types
of input data has been have been included in the tool.

Figure 6 shows the class diagram for the java-event-logs tool. The “MainMiner” is the main class which receives
the user options and delegates it to the right miner. The “LogMiner” is the abstract parent class for the three
miners which applies the factory method pattern, the “IGVLogMiner”,”LogCompilationLogMiner” are the
miners that responsible for extract the event logs patterns from dependence graph and compilation logs and
finally the “MXMLLogBuilder” class which is responsible about the event logs output format.

The java-event-logs tool has two execution options “-igv” and “-logc” for dependence graph and compilation
logs respectively. As shown in Figure 7 and Figure 8, the tool apply certain algorithm based on each log input.

Figure 6. Class diagram for java-event-logs tool

4. Process-Based Profiling in Action

In this section, the process mining techniques applied on the profiling data that previously mentioned by
mapping the data using java-event-logs tool and present the faces of various analysis perspectives supported by
ProM. Data extracted by profiling the fop application in the DaCapo benchmark suite. As in Table 3, time of the
action is one of elements that process mining uses during analysis, although it is optional, some important
analysis techniques rely on it. So, the time attribute added to profiling data by modifying the profiler agent.

The Heuristics Miner (HM) algorithm (Weijters & Van Der Aalst, 2003; Van Der Aalst et al., 2006; Burattin,
2015) focuses on the control flow perspective and generates a process model in form of a Heuristics Net for the
underlying event log. Also HM is a practical applicable mining algorithm that can deal with noise, and can be
used to express the main behavior of the event log. So, for the control flow perspective of the next cases, the HM
algorithm selected. The HM provides list of parameters to control the level of details in the extracted model by it.

www.ccsenet.org/cis Computer and Information Science Vol. 9, No. 1; 2016

60

The following parameter values have been used: (1, 1, 0.01, 0.01, 0.01, 0.01, 1, 0.1, false, true, false) for
(“Relative-to-best threshold”, “Positive observations”, “Dependency threshold”, “Length-one-loops threshold”,
“Length-two-loops threshold”, “Long distance threshold”, “Dependency divisor”, “AND threshold”, “Extra
information”, “Use-all-events-connected heuristic”, “Long distance threshold dependency heuristics”)
respectively.

Figure 7. The algorithm steps to convert dependency graph to event log

Figure 8. The algorithm steps to convert Compilation logs to event log

The timestamp of an activity used to calculate these ordering. Therefore, HM introduce the following notations
and defines an event log as follows:

Let T be a set of activities, σ ∈ T* is an event trace and W ⊆ T* is an event log. And let a, b ∈ T, a >W b iff
there is a trace σ =t1,t2,t3 …tn and i∈{1, …, n-1} such that σ∈W and ti = a and ti+1=b, a →W b iff a >W b and

www.ccsenet.org/cis Computer and Information Science Vol. 9, No. 1; 2016

61

b ≯W a, a#W b iff a ≯W b and b ≯W a, a∥W b iff a >W b and b >W a, a >>W b iff there is a trace σ
=t1t2t3 …tn and i∈{1, …, n-2} such that σ∈W and ti = a and ti+1=b and ti+2 = a, a >>>W b iff there is a trace σ
=t1t2t3 …tn and i<j and i,j ∈{1, …, n} such that σ∈W and ti = a and tj=b.

HM Algorithm Steps: The HM algorithm is a three-step algorithm: Construct a dependency graph on the basis of
the event log. For each task in the event log establish the input-output expressions in form of type of
dependencies between activities. Discover the long distance dependency relations.

Mining of the dependency graph: The starting point of the Heuristics Miner is the construction of a so-called
dependency graph. A frequency based metric is used to indicate how certain that there is truly a dependency
relation between two events a and b (notation a W b).

Let W be an event log over T, and a, b ∈ T. Then |a >W b| is the number of times a >W b occurs in W, and

Equation 1. Dependency measure between a and b

4.1 JVM Dependence Graph Implementation

For each different data mapping from dependence graph to event log, different analysis perspective obtained.
The timestamp attribute added for each graph element. Two different mapping listed below:

4.1.1 Method Snapshots

This pattern provides a graphical representation of each method snapshot of the program dependence graph. This
represent an equivalent for what provided by the IGV tool. Each process will represent states of single method;
each case will represent two nodes attached with one edge, any case constructed in two actions, first one is the
source node and second action is the destination node. The filtration functionality used to select the specific state
to work on. The profiling data mapped to event log as in Table 4.

Table 4. Data mapping to extract the method snapshot

Event Log Profiling Data Description
Case Graph: state title Each case represents graph stat of the method
Activity node & edge Each activity represents connection between nodes

Figure 9 shows the control flow graph represent method state extracted using HM algorithm after filtering it
using instance name filter with regular expression value “^(?!After|Parsing).*$” to model “After Parsing” state
only. Also there are different analysis techniques are available for direct applying like LTL and SCIFF checkers
(Lamma et al., 2009) which uses a logic-based approach to mining declarative models and DWS clustering
algorithm (Guzzo et al., 2008) which provides solution for over-fitting problem that appear with complex
methods and which is not handled in IGV tool.

4.1.2 Compilation Workflow

This pattern provides very detailed information about compiler behavior during the process of compilation of the
monitored code, the compilation process changes based on method structure and complexity. The event log will
have only one process; ach case will represent one method compilation steps and each action will include the
step title, event time is the time of starting this step and the originator will be the full name of the method itself.
The profiling data mapped to event log as in Table 5.

Table 5. Data mapping to extract compilation workflow from dependency graph

Event Log Profiling Data Description
Case method Each case represents single method compilation states.
Activity Graph: state title Each activity represents one state.
Timestamp Graph: state time The starting time of this state.
Originator method Putting originator as method full name to use in analysis.

 = | > | − | > || > | + | > | +

www.ccsenet.org/cis Computer and Information Science Vol. 9, No. 1; 2016

62

Figure 9. Dependence Graph state as represented in ProM tool

Starting with the control flow model for compilation process, Figure 10 shows part of the HM model that
explains which compiler state has triggered and in which sequence and frequency, that allows understanding the
code complexity and the corresponding compiler behavior. For example, how many “Phase Ideal Loop” states
compiler has to call, did the compiler call the “eliminating allocations and locks” state or not and for how many
times and so on. The applying of LTL and SCIFF checkers allows defining which compilation pattern to check,
also clustering over-fit patterns and simplify then using DWS.

Some different analysis perspectives can be extracted directly; like basic statistics about the occurrences of the
compilation states as in Figure 11, using the basic performance analysis we can easily identify the time that each
state takes in average as in Figure 12 to identify the costly states or the time that each method takes in general
while compilation, by using the “Originator by Task Matrix” we can identify which method trigger specific state
in high frequency as in Figure 13.

To study the compilation patterns we can use “Sequence Diagram Analysis” to list the paths that the control flow
constructed from them with identification for the most frequent path that was happened during compilation as in
Figure 14, in this case the total unique compilation paths is 9 paths represent 38 cases and the most frequent path
happened 21 times. For studying the changes in compiler behavior from method to another, we can use the
“Trace Diff Analysis” to compare compilation steps for two methods, Figure 15 shows the common steps in
order between two method and when changes start and end.

www.ccsenet.org/cis Computer and Information Science Vol. 9, No. 1; 2016

63

Figure 10. Workflow diagram that represent some methods compilation processes in JVM according to

dependency graph

Figure 11. Compilation states basic statistics

www.ccsenet.org/cis Computer and Information Science Vol. 9, No. 1; 2016

64

Figure 12. Bar chart for compilation states time

Figure 13. States’ frequency for each individual method

www.ccsenet.org/cis Computer and Information Science Vol. 9, No. 1; 2016

65

Figure 14. Sequence Diagram for the compilation paths

Figure 15. Compare two compilation paths by comparing the process activities

4.2 Compilation Logs Implementation

Compilation logs provided by JVM HotSpot developers inspects the compilation process. Compilation logs
focuses on the compilation of method without describing the method architecture. Two patterns listed below, first
is about classes relationship according to compilation, and the other pattern is compilation workflow to describe
compiler behavior during the process of compilation.

4.2.1 Classes Relationship Based on Compilation

In JVM HotSpot method compilation happens under some optimization conditions, for this pattern, and to
extract a valid classes relationship based on compilation, the compilation should happens for all method. So, the
“-Xcomp” option has been used in this pattern to force compilation for all methods. Each process will represent
single classes sequence; each case will represent two classes relationship according to the order of compilation
methods in both of them as in Table 6.

Figure 16 shows part of the HM workflow model that describes the classes’ relationship based on compilation
process. The dependency between classes is so clear in such a model, by filtering this model to cover specific
classes with predefine relation, we can make sure that what we designed actually applied. Obviously there are

www.ccsenet.org/cis Computer and Information Science Vol. 9, No. 1; 2016

66

some basic statistic can be extracted from this pattern directly. Like the time has been consumed with each
method, frequencies of method compilations in each class and which class has more compilation frequency.
Listing the methods based on their compilation order as in the LogCompilation tool extracted directly from the
log inspector as in Figure 17.

Figure 16. HM workflow model that represent classes relationship based on compilation

Table 6. Data mapping to extract classes’ relationship based on compilation

Event Log Profiling Data Description
Case Two Tasks Each case represents one sequence of compilation
Activity Task: Class Name Each activity represents connection between two classes

Figure 17. Methods compilation order as shows in log inspector

www.ccsenet.org/cis Computer and Information Science Vol. 9, No. 1; 2016

67

4.2.2 Compilation Workflow

This pattern describes compiler behavior during the process of compilation as organized in JVM compilation
logs. The event log will have only one process; ach case will represent one method compilation process and each
action will include the compilation phase, event time is the time of starting this phase and the originator will be
the full name of the class that contains this method. The profiling data mapped to event log as in Table 7. Figure
18 shows the HM model, and all the analysis patterns that mentioned with dependency graph can be extract as
well from JVM compilation logs.

Table 7. Data mapping to extract compilation workflow from JVM compilation logs

Event Log Profiling Data Description
Case Task Each case represents one method compilation process.
Activity Phase Each activity represents one phase of compilation process.
Timestamp Phase time The starting time of this phase.
Originator Task: Class Name Putting originator as method full name to analysis.

Figure 18. Workflow diagram that represent some methods compilation processes in JVM according to
compilation logs

5. Conclusions

In this paper, new approach has introduced to use process-mining techniques to represent the analysis and
visualize phases of JVM profilers. They are flexible enough to cover so many perspectives in several ways. That
can form a unified layer for analysis and visualize across profiling perspectives.

To do so, new tool java-event-logs has introduced to implement this approach. The java-event-logs tool has two

www.ccsenet.org/cis Computer and Information Science Vol. 9, No. 1; 2016

68

execution options “-igv” and “-logc” for dependence graph and compilation logs respectively, and the outputs
provide new perspectives for profiling data analysis.

Applying this new approach on the JVM profilers provides information about java program or JVM (HotSpotTM)
and helps JVM developers with new aspect of analysis with each process mining perspective. On the other hand,
we will work on how to use process mining to provide interactive approached that can help to analysis the Java
Byte code program and provide feedback to JVM to enhance execution time and memory management.

References

Ahmad, S. et al. (2014). Dependence flow graph for analysis of aspect-oriented programs. International Journal
of Software Engineering & Applications, 5(6), 125.

Balmas, F. (2001). Displaying dependence graphs: A hierarchical approach. Reverse Engineering, 2001.
Proceedings. Eighth Working Conference on, IEEE.

Bergel, A. et al. (2012). Spy: A flexible code profiling framework. Computer Languages, Systems & Structures
38(1), 16-28.

Blackburn, S. M. et al. (2006). The DaCapo benchmarks: Java benchmarking development and analysis. ACM
SIGPLAN Notices, ACM.

Bowers, K. R., & Kaeli, D. (1998). Characterizing the SPEC JVM98 benchmarks on the Java virtual machine.
Te hnical Report ECE-CEG-98-026, Northeastern University, Department of Electrical and Computer
Engineering.

Burattin, A. (2015). Heuristics Miner for Time Interval. Process Mining Techniques in Business Environments,
Springer: 85-95.

Chesani, F. et al. (2009). Exploiting inductive logic programming techniques for declarative process mining.
Transactions on Petri Nets and Other Models of Concurrency II, Springer: 278-295.

De Medeiros, A. K. A. et al. (2008). Process mining based on clustering: A quest for precision. Business Process
Management Workshops, Springer.

Dmitriev, M. (2004). Profiling Java applications using code hotswapping and dynamic call graph revelation.
ACM SIGSOFT Software Engineering Notes, ACM.

Dufour, B. et al. (2003). Dynamic metrics for Java. ACM SIGPLAN Notices, ACM.

Dufour, B. et al. (2003). J: a tool for dynamic analysis of Java programs. Companion of the 18th annual ACM
SIGPLAN conference on Object-oriented programming, systems, languages, and applications, ACM.

Ferrante, J. et al. (1987). The program dependence graph and its use in optimization. ACM Transactions on
Programming Languages and Systems (TOPLAS), 9(3), 319-349.

Krinke, J. (2004). Visualization of program dependence and slices. Software Maintenance, 2004. Proceedings.
20th IEEE International Conference on, IEEE.

Lee, S. H., & Sim, S. (2015). Aspect Refactoring Techniques for System Optimization. Indian Journal of Science
and Technology, 8, 412.

Liang, S., & Viswanathan, D. (1999). Comprehensive Profiling Support in the Java Virtual Machine. COOTS.

Paleczny, M. et al. (2001). The java hotspot TM server compiler. Proceedings of the 2001 Symposium on Java
TM Virtual Machine Research and Technology Symposium-Volume 1, USENIX Association.

Sarimbekov, A. et al. (2012). JP2: Call-site aware calling context profiling for the Java Virtual Machine.
Science of Computer Programming.

Sjoblom, I. et al. (2011). Can You Trust Your JVM Diagnostic Tools? MICS.

Van Der Aalst, W. M. et al. (2007). ProM 4.0: comprehensive support for real process analysis. Petri Nets and
Other Models of Concurrency–ICATPN 2007, Springer, 484-494.

Van Der Aalst, W. M., & De Medeiros, A. K. A. (2005). Process mining and security: Detecting anomalous
process executions and checking process conformance. Electronic Notes in Theoretical Computer Science
121, 3-21.

Van Der Aalst, W. M., & Van Der Aalst, W. (2011). Process mining: discovery, conformance and enhancement of
business processes. Springer.

www.ccsenet.org/cis Computer and Information Science Vol. 9, No. 1; 2016

69

Van Der Aalst, W. M., & Weijters, A. (2004). Process mining: a research agenda. Computers in Industry, 53(3),
231-244.

Van Dongen, B. F. et al. (2005). The ProM framework: A new era in process mining tool support. Applications
and Theory of Petri Nets 2005, Springer, 444-454.

Weijters, A. et al. (2006). Process mining with the heuristics miner-algorithm. Technische Universiteit
Eindhoven, Tech. Rep. WP 166.

Weijters, A. J., & Van Der Aalst, W. M. (2003). Rediscovering workflow models from event-based data using
little thumb. Integrated Computer-Aided Engineering, 10(2), 151-162.

Wert, A. et al. (2015). AIM: Adaptable Instrumentation and Monitoring for automated software performance
analysis. Automation of Software Test (AST), 2015 IEEE/ACM 10th International Workshop on, IEEE.

Würthinger, T. (2007). Visualization of program dependence graphs. Johannes Kepler University Linz. Master.

Würthinger, T. et al. (2008). Visualization of program dependence graphs. Compiler Construction, Springer.

Copyrights

Copyright for this article is retained by the author(s), with first publication rights granted to the journal.

This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution
license (http://creativecommons.org/licenses/by/3.0/).

