Air Traffic Forecast Empirical Research Based on the MCMC Method
- Jian-bo Wang
- Chong-jun Fan
- Lei Bai
Abstract
Airport air traffic is one of the most important and hardest one among all the airport data forecasts. In this paper, the Markov Chain Monte Carlo (MCMC) method of applied theory of statistics has been introduced into the aviation sector, and the discussion on airport air traffic forecast has been conducted taking Shanghai airport as the application background. MCMC method is designed to solve the problem parameters expectations where some baysian inference can not be directly calculated. This paper conducts the iterative computation using WinBUGS, EViews is used to estimate the initial iteration parameter of the regression model, and it is on this basis that the regression equation under the MCMC method is obtained.
- Full Text: PDF
- DOI:10.5539/cis.v5n5p50
Journal Metrics
WJCI (2022): 0.636
Impact Factor 2022 (by WJCI): 0.419
h-index (January 2024): 43
i10-index (January 2024): 193
h5-index (January 2024): N/A
h5-median(January 2024): N/A
( The data was calculated based on Google Scholar Citations. Click Here to Learn More. )
Index
- Academic Journals Database
- BASE (Bielefeld Academic Search Engine)
- CiteFactor
- CNKI Scholar
- COPAC
- CrossRef
- DBLP (2008-2019)
- EBSCOhost
- EuroPub Database
- Excellence in Research for Australia (ERA)
- Genamics JournalSeek
- Google Scholar
- Harvard Library
- Infotrieve
- LOCKSS
- Mendeley
- PKP Open Archives Harvester
- Publons
- ResearchGate
- Scilit
- SHERPA/RoMEO
- Standard Periodical Directory
- The Index of Information Systems Journals
- The Keepers Registry
- UCR Library
- Universe Digital Library
- WJCI Report
- WorldCat
Contact
- Chris LeeEditorial Assistant
- cis@ccsenet.org