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Abstract 

Airport air traffic is one of the most important and hardest one among all the airport data forecasts. In this paper, 
the Markov Chain Monte Carlo (MCMC) method of applied theory of statistics has been introduced into the 
aviation sector, and the discussion on airport air traffic forecast has been conducted taking Shanghai airport as 
the application background. MCMC method is designed to solve the problem parameters expectations where 
some baysian inference can not be directly calculated. This paper conducts the iterative computation using 
WinBUGS, EViews is used to estimate the initial iteration parameter of the regression model, and it is on this 
basis that the regression equation under the MCMC method is obtained. 
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1. Introduction 

In Bayesian statistical learning, the estimation of overall parameter often needs high-dimensional probability 
distribution function to do the integral. Under normal circumstances, there is no clear expression of this integral, 
so it is very difficult to do it. In this case, the Markov Chain Monte Carlo (MCMC) method is a simple and 
effective calculation method. 

The basic idea of MCMC method is to construct a Markov Chain, making its stationary distribution the posterior 
distribution of the parameters to be estimated, thus generating the samples of posterior distribution through this 
Markov Chain, and doing the Monte Carlo integration of the samples of Markov Chain when they reach 
stationary distribution. For the reason that the joint distribution of the parameters and variables in many time 
series models are complex and high dimensional, it is impossible to extract samples directly from the distribution. 
MCMC can generate samples from the joint density of parameters, without having to know the specific forms of 
expression of density. The most commonly used MCMC algorithm is Gibbs sampling, which is more accessible 
to gain the conditional distribution density through simulation, and it adopts iterative procedure to construct the 
Markov Chain. Under the simulation of large sample, it is expected to converge to the target distribution (Lin & 
Han, 2007; Stephen, 1998; Lin & Han, 2005). 

WinBUGS (Lunn, Spiegelhalter, Thomas, & Best, 2009) is a kind of specialized statistical software based on 
MCMC method, in which all unknown parameters are regarded as random variables in order to find out the 
solution of this kind of probability model then. In this paper, basing on the regression model, pretreatment is 
done to the initial value of the MCMC model, and empirical study is done regarding the relationship between air 
traffic, GDP growth rate and population growth (David, 2001). The GDP means the money value of all the final 
goods and services produced in the domestic territory of a country in a year’s time. In this paper, we conduct 
three parts, including MCMC method description, Empirical research on air traffic forecast and conclusions. 

2. MCMC Method and Gibbs Sampling 

The MCMC method is a general simulation method for sampling from posterior distributions and computing 
posterior quantities of interest. MCMC methods sample succeed from a target distribution, and each sample 
depends on the previous one, hence the notion of the Markov Chain.  

A Markov Chain is a sequence of random variables, 1 2, , ,    in which the random variable t  depends on all 
previous s  only through its immediate predecessor 1t  . The Markov Chain applied to sampling as a 
mechanism that traverses randomly through a target distribution without having any memory of where it has 
been. Where it moves next is entirely dependent on where it is now. 



www.ccsenet.org/cis Computer and Information Science Vol. 5, No. 5; 2012 

51 
 

Monte Carlo, as in Monte Carlo integration, is mainly used to approximate an expectation by using the Markov 
Chain samples. In the simplest version 
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where (.)g  is a function of interest and t  are samples from ( )p   on its support S. This approximates the 
expected value of ( )g  . 

The Gibbs sampler is a special case of the Metropolis sampler in which the proposal distributions exactly match 
the posterior conditional distributions and proposals are accepted 100% of the time. The main features of the 
Gibbs sampling, a Markov Chain sample, is extracted from a series of conditional distributions (George & 
Edward, 1992; Gelfand & Smith, 1990). 

Suppose 
1( , , ) 'k     is the parameter vector, ( | )p y   is the likelihood, and ( )   is the prior distribution. 

The full posterior conditional distribution of ( | , , )i j i j y     is proportional to the joint posterior density; that 
is,  

 ( | , , ) ( | ) ( )i j i j y p y        (2) 

For instance, the one-dimensional conditional distribution of
1 given *

j j  , 2 j k  is computed as the 
following:  

 * * * * *
1 1 2 1 2( | , 2 , ) ( | ( , , , ) ( ( , , , ) ')j j k kj k y p y                    (3) 

The Gibbs sampler works as follows:  

Set 0t   and choose an arbitrary initial value of (0) 0 (0)
1{ , , }k    . 

Generate each component of   as follows:  

 draw ( 1)
1

t   from ( ) ( )
1 2( | , , , )t t

k y     

 draw ( 1)
2
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2 1 3( | , , , , )t t t
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 ... 
 draw ( 1)t

k
  from ( 1) ( 1)

1 1( | , , , )t t
k k y    

  

Set 1t t  . If t T  the number of desired samples, return to step 2.  

When Gibbs sampling iterates enough number of steps, we can believe the sample is subject to the target 
distribution, or converge to the target distribution. The choice of the initial value will affect the convergence rate 
of MCMC. 

3. Empirical Research on Air Traffic Forecast 

It is rather important to choose proper factors ahead of modeling and estimation. The following parts include 
factors analysis and parameters estimation. 

3.1 Influencing Factors Analysis 

Air traffic forecast has always been a difficult and key point of the airport aviation forecasts. There are many 
aspects of factors that influence air traffic, in this paper, macro-economic factor and demographic impact factor 
are used to analyze the air traffic. For economic factor, GDP is an important standard to measure the 
comprehensive level of the economic development; population growth rate index is used as demographic factor. 
At the same time, because the data of GDP and population growth rate are rather consecutive, the reference value 
of the data is quite high. We conduct a linear regression of air traffic growth based on GDP growth rate and 
population growth rate. Therefrom a binary regression model is built as follows: 

 
0 1 1 2 2Y X X      (4) 

Where 
0 1 2, ,    are parameters to be estimated, 

1X  and 
2X  are know vectors stand for GDP growth and 

population growth. Y stands for Airport traffic volume growth. This article uses Eviews simulation, according to 
data released by National Bureau of Statistic from 1990 to 2009, and then Equation (4) would have the form: 

 
1 23.071 0.5453 3.771Y X X    (5) 
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3.2 Parameters Estimation Based on the MCMC Method 

WinBUGS is a special package based on MCMC method, which can easily conduct Gibbs sampling on many 
models and distributions. Before implementing Bayesian analysis, programmers need to set prior distribution and 
initial values of variables. The analysis processes include modeling, data loading, initial values and iterative 
analysis. In this case, the priors are defined as 

Regression equation: 

 
0 1 1 2 2[ ] [ ] [ ]muy i X i X i       (6) 

Prior distribution of the parameters: 

0 ~ (0,1.0 6)N E  ; 
1 ~ (0,1.0 6)N E  ; 

2 ~ (0,1.0 6)N E  ; ~ (0.001,0.001)Gamma ; ~ ( [ ], )iY N muy i  . 

The initial parameter value: 

0 3.071  ; 
1 0.5453  ; 

2 3.771  ; 1  . 

In order to ensure the convergence of the parameters, we first conduct 5000 Gibbs pre-iterations, and then 
discard the initial iteration. We construct the model using a graphical interface Doodle (Figure 1). Meanwhile, 
we set up three Markov Chains in WinBUGS, and at the same time enter the initial values. This is because, for 
the convergence parameters, (and) three iterations results of the Markov Chain tend to be overlapping. It is 
conducive to the observation of the results. 

 

 
Figure 1. Bayesian modeling in WinBUGS 

 
Iterations start from 5001 to 60000. The statistical results show as in Table 1, which produces summary statistics 
for the variable, pooling over the chains selected. In this case, we choose 2.5% and 97.5% as the confidence 
interval. The quantity reported in the MC error column gives an estimate of 1/2/ N , the Monte Carlo standard 
error of the mean. During the 95% Confidence intervals, the average value of α0, α1, α2 and τ are the interval 
(-14.13, 20.24), (-0.1383, 1.241), (-17.26, 24.69), (0.004114, 0.009146) respectively. 

 
Table 1. Posterior estimate statistics for monitored parameters with 60000 iterations 

node mean sd MC error 2.50% median 97.50% start sample 

α0 3.054 8.653 0.03505 -14.13 3.062 20.24 5001 60000 

α1 0.546 0.3488 0.001483 -0.1383 0.5455 1.241 5001 60000 

α2 3.756 10.56 0.04296 -17.26 3.755 24.69 5001 60000 

τ 0.009543 0.00338 1.53E-05 0.004114 0.009146 0.01723 5001 60000 

 

Before drawing our conclusion, we need to have a judgment on density estimation and convergence statistics of 
the parameters. The following plots a smoothed Posterior Kernel Density Estimate for the variable if it is 
continuous or a histogram if it is discrete (Figure 2). 
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Figure 2. Posterior Kernel Density Estimation for monitored parameters with 60000 iterations 
 

In this case, we are running three chains simultaneously. The trace and history plots show each chain in a 
different color. As the plots show (Figure 3), all the chains appear to be overlapping one another, therefor, we can 
be reasonably confident that convergence has been achieved. 

 

 
Figure 3. Trace plots for monitored parameters’ three Chains iterations 
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The following plots (Figure 4) show the Gelman-Rubin convergence statistics. The width of the central 80% 
interval of the pooled runs is green, the average width of the 80% intervals within the individual runs is blue, and 
their ratio R (= pooled / within) is red. R would generally be expected to be greater than 1 if the starting values 
are suitably over-dispersed. The proper one should be concerned both with convergence of R to 1, and with 
convergence of both the pooled and within interval widths to stability. 

 

 
Figure 4. Parameters’ convergence diagnostics 

 
According to the data of Table 1, as well as Posterior Kernel Density Estimation, Trace Plots, Parameters’ 
Convergence Diagnostics, we believe that parameters estimation based on MCMC method is valid. The linear 
regression model equation is shown as in Equation (7). 

 
1 23.054 0.546 3.756Y X X    (7) 

4. Conclusions 

Air traffic forecast has always been a problem troubling airport senior decision-makers to make scientific 
decisions, but the use of conventional forecasting methods often cannot get satisfactory results. In this paper, 
MCMC simulation methods and WinBUGS software applications based on Gibbs sampling are used to conduct 
the volatility analysis of the airport air traffic data. The analytical method proposed in this paper can provide new 
ideas and methods for the scientific decision-making of the airport senior decision-makers. We hope that, based 
on the fundamental prediction research of the MCMC method, airports can have a deeper level of study. 

References 

David, P. M. S. (2001). Actuarial modeling with MCMC and BUGS. North American Actuarial Journal, 5(2), 
96-125. 

Gelfand, A. E., & Smith, A. F. M. (1990). Sampling-Based Approaches to Calculating Marginal Densities. J. 
American Statistical Association, 85, 398-409. http://dx.doi.org/10.1080/01621459.1990.10476213 

George, C., & Edward, I. G. (1992). Explaining the Gibbs sampler. The American Statistician, 46, 167-174.  

Lin, J., & Han, Y. (2005). Exponential Regression Model Based on MCMC Method and Its Application. 
Operations Research and Management Science, 14(4), 95-100. 

Lin, J., & Han, Y. (2007). Gamma Process Priors Model Based on MCMC Simulation and Its Application in 
Reliability. Journal of System Simulation, 19(22), 5099-5102. 

Lunn, D., Spiegelhalter, D., Thomas, A., & Best, N. (2009). The BUGS project: Evolution, critique and future 
directions. Statistics in Medicine, 28, 3049-3067. http://dx.doi.org/10.1002/sim.3680 

Stephen, P. B. (1998). Series D (The Statistician): Chain Monte Carlo Method and Its Application. Journal of the 
Royal Statistical Society, 47(1), 69-100. 

 


