Real-time Automated Detection and Recognition of Nigerian License Plates via Deep Learning Single Shot Detection and Optical Character Recognition

  •  Kayode David Adedayo    
  •  Ayomide Oluwaseyi Agunloye    


License plate detection and recognition are critical components of the development of a connected Intelligent transportation system, but are underused in developing countries because to the associated costs. Existing license plate detection and recognition systems with high accuracy require the usage of Graphical Processing Units (GPU), which may be difficult to come by in developing nations. Single stage detectors and commercial optical character recognition engines, on the other hand, are less computationally expensive and can achieve acceptable detection and recognition accuracy without the use of a GPU. In this work, a pretrained SSD model and a tesseract tessdata-fast traineddata were fine-tuned on a dataset of more than 2,000 images of vehicles with license plate. These models were combined with a unique image preprocessing algorithm for character segmentation and tested using a general-purpose personal computer on a new collection of 200 automobiles with license plate photos. On this testing set, the plate detection system achieved a detection accuracy of 99.5 % at an IOU threshold of 0.45 while the OCR engine successfully recognized all characters on 150 license plates, one character incorrectly on 24 license plates, and two or more incorrect characters on 26 license plates. The detection procedure took an average of 80 milliseconds, while the character segmentation and identification stages took an average of 95 milliseconds, resulting in an average processing time of 175 milliseconds per image, or 6 photos per second. The obtained results are suitable for real-time traffic applications.

This work is licensed under a Creative Commons Attribution 4.0 License.
  • ISSN(Print): 1913-8989
  • ISSN(Online): 1913-8997
  • Started: 2008
  • Frequency: quarterly

Journal Metrics

WJCI (2020): 0.439

Impact Factor 2020 (by WJCI): 0.247

Google Scholar Citations (March 2022): 6907

Google-based Impact Factor (2021): 0.68

h-index (December 2021): 37

i10-index (December 2021): 172

(Click Here to Learn More)