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Abstract 

License plate detection and recognition are critical components of the development of a connected Intelligent 

transportation system but are underused in developing countries because of the associated costs. Existing license 

plate detection and recognition systems with high accuracy require the usage of Graphical Processing Units 

(GPU), which may be difficult to come by in developing nations. Single-stage detectors and commercial optical 

character recognition engines, on the other hand, are less computationally expensive and can achieve acceptable 

detection and recognition accuracy without the use of a GPU. In this work, a pre-trained SSD model and a 

tesseract tessdata-fast traineddata were fine-tuned on a dataset of more than 2,000 images of vehicles with 

license plates. These models were combined with a unique image preprocessing algorithm for character 

segmentation and tested using a general-purpose personal computer on a new collection of 200 automobiles with 

license plate photos. On this testing set, the plate detection system achieved a detection accuracy of 99.5 % at an 

IOU threshold of 0.45 while the OCR engine successfully recognized all characters on 150 license plates, one 

character incorrectly on 24 license plates and two or more incorrect characters on 26 license plates. The detection 

procedure took an average of 80 milliseconds, while the character segmentation and identification stages took an 

average of 95 milliseconds, resulting in an average processing time of 175 milliseconds per image, or 6 photos 

per second. The obtained results are suitable for real-time traffic applications. 

Keywords: real-time, license plate recognition, single-shot detector, computer vision, graphical processing unit, 

optical character recognition 

1. Introduction 

The detection and recognition of license plates are critical parts of traffic monitoring and are essential to the 

development of a connected Intelligent transportation system. Automatic vehicle License Plate Detection and 

Recognition (ALPR) engines have been extensively explored and have attained state-of-the-art results with the 

recent use of Graphical Processing Units (GPU) in deep learning computation applications (Hendry & Chen, 

2019). However, these GPU systems are expensive and may not be widely available in developing nations. On 

the other hand, the recent increase in ICT availability in developing countries has made basic ICT tools such as 

mobile phones and general-purpose computers available in these areas (Avgerou et al., 2016). Thus, deploying 

ALPR systems on easily accessed general-purpose PCs will facilitate ALPR usage in developing countries. 

The process of ALPR majorly consists of three important stages that are the license plate detection stage, 

character segmentation, and character recognition stages (Agbemenu, Andrew et al., 2018). All stages of ALPR 

are important. Nonetheless, a failure in the plate detection stage causes the entire ALPR process to fail. Deep 

learning-based plate detection systems, on the other hand, have the lowest false detection rates (Wang et al., 

2021). However, deep learning-based license plate detection and recognition systems that achieve exceptional 

accuracy typically use two-stage deep learning techniques such as R-CNN and FR-CNN for ALPR, which are 

too heavy to operate in real-time on simple non-GPU devices (Zebin et al., 2019). On the other hand, one-stage 

detectors such as YOLO and SSD, which are faster and can work in real-time, provide systems that are fast and 

can operate in real-time but produce multiple errors due to their poor performance in identifying small objects 

such as plate number characters (E. Dong et al., 2018). Character segmentation and character recognition using 
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deep learning techniques have also performed excellently in literature (Shivakumara et al., 2018) but are as well 

computationally expensive. Optical character recognition engines are intended for large-scale text recognition 

with decent accuracy, and they are optimized to run quickly on both GPU and non-GPU platforms. 

This study aims to develop a system for detecting and recognizing Nigerian license plates in real-time using 

non-GPU general-purpose computers. The above objective will be achieved by integrating a computationally 

efficient fine-tuned single shot detector object detection pipeline and optical character recognition. The system 

will also be able to provide additional information about the class of the license plate and the issuer’s 

information. 

The rest of this paper is structured as follows. Section 2 gives a literature review of the various ALPR stages. 

Section 3 explains the proposed system and its implementation. Section 4 contains the results and discussion of 

validating the developed system on a test dataset. Section 5 concludes the paper. 

2. Literature Review 

ALPR is a critical component of ITS security and traffic control systems that have received extensive attention 

from researchers. Images of stationary or moving vehicles with valid license plate instances are the primary input 

to ALPR systems. ALPR consists of three major steps, which are implemented in the literature using various 

processing methods. The first steps of ALPR are license plate detection and localization. Edge detection and 

feature-based detection algorithms are two extensively utilized license plate detection and localization 

techniques in literature. Edge detection (Agbemenu, Andrew et al., 2018; Dalarmelina et al., 2020; Ibiyemi et al., 

2020; Oluchi et al., 2019) yields high inferencing speed but also produces several incorrect candidates since the 

system frequently detects undesirable edges (Hendry & Chen, 2019). Feature-based detection techniques make 

use of license plate-specific features such as color and texture (Deb & Jo, 2008; Wu et al., 2013), or a mix of 

features. Deep learning plate detectors that use several license plate features to localize them mostly employ 

machine learning models and techniques such as suppress vector machines (SVM) (Oluchi et al., 2019) and 

convolution neural networks (CNN) (M. Dong et al., 2017; Shivakumara et al., 2018). The capacity of deep 

learning-based detectors to use several features of a license plate in localizing it enhances plate detection 

accuracy and generalization at the expense of greater processing cost.  

Character segmentation in ALPR entails the process of denoising the detected plate image and separating 

characters into individual units that can be properly recognized. Commonly used character segmentation 

techniques are; characters erosion and dilation with edge and contour detection (Attah et al., 2016; Dalarmelina 

et al., 2020), character aspect ratio sampling (Agbemenu, Andrew et al., 2018; Ibiyemi et al., 2020), and the use 

of multiple sliding concentric window character region of Interest (ROI) pooling (Anagnostopoulos et al., 2006). 

CNN-based ALPR systems (Hendry & Chen, 2019; Shivakumara et al., 2018) often replace the character 

segmentation stage with a localization process carried out by the deep learning model. In this process, individual 

plate characters are localized feature-wise and then automatically segmented before they are passed up for 

recognition. Character segmentation is important for proper character recognition. If characters are not well 

segmented, the accuracy of the character recognition stage will be affected. 

Character recognition (CR) is frequently the final stage in most ALPR systems. In the work of (Ibiyemi et al., 

2020), CR was achieved using template matching. This method of CS has little capacity for generalization and is 

computationally expensive.  In the studies of (M. Dong et al., 2017; Hendry & Chen, 2019), CR was achieved 

using multiple lightweight CNN classifier models. These models were trained to detect each character of the 35 

license plate characters (A-Z and 0-9). They achieved great accuracy at the expense of speed. CR performed 

using OCR engines such as tesseract (RNN based LSTM engine maintained by Google) (Agbemenu, Andrew et 

al., 2018; Dalarmelina et al., 2020) are very fast but typically achieves full license plate recognition accuracies 

between 60 and 70%. These recognition accuracy values can be attributed to the character segmentation methods 

employed in the studies which do not completely conform to the black texts on with background requirements of 

the OCR engine (tesseract-ocr, 2021b). 

In this study, we combined a light SSD mobilenetV2 CNN license plate object detector with a fast OCR engine 

to obtain higher plate detection and recognition accuracy at a real-time inferencing speed. We have also focused 

heavily on the character segmentation stage to supply our OCR engine with text blobs that meet the engine's 

requirements and so improve character recognition accuracy. The license plate of emphasis in this study is the 

Nigerian license plate system, which has been fully discussed in the work of (Ibiyemi et al., 2020). 

3. Materials and Methods 

In this section, we introduced the proposed real-time ALPR system and its constituents. 
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3.1 Proposed System 

The proposed system is designed to acquire stationary images of vehicles from any input source. The images 

used in this study were acquired using an 8-megapixel smartphone camera with each picture having an average 

size of 3 MB under various lighting conditions. 700 images of vehicles with Nigerian license plates (both old and 

new) were captured and digitally augmented by rotation and skewing to provide a dataset of 2100 images to be 

used in training the plate detection and character recognition algorithms. 200 images were also captured and 

preserved for validating the ALPR system. To correctly detect and recognize a license plate, the system proceeds 

through the algorithm below; 

1. Obtain a high-quality image 

2. Detect license plate via the object detection pipeline 

3. If a license plate is detected; 

4. Separate the RGB channels of the license plate image and compute their averages 

5. Classify the license plate as private, commercial or government 

6. Grayscale the image 

7. Perform canny edge detection 

8. If numbers of edges greater than the threshold; 

9. Perform adaptive thresholding 

10. End if 

11. Else perform Otsu thresholding 

12. End else 

13. Compute plate aspect ratio and interpolate a character region 

14. Crop out the character region strip and pass to the OCR engine 

15. Perform OCR and get raw text 

16. Compare the raw text to the required format based on its type 

17. If a valid pattern is found; 

18. Extract the local government or agency code provide the designated state or agency 

19. Store the plate number character to a database 

20. End if 

21. End if 

The software implementation of the above algorithm is achieved using the python programing language.  

3.2 License Plate Detection 

In this stage, a high-quality image is downsampled and sent into a deep learning object detection pipeline. The 

pipeline returns box coordinates, which reflect the recognized license plate's bounding boxes. The pipeline 

extrapolates the supplied box coordinates to their original places on the high-quality input image. The license 

plate ROI is then retrieved from the specified bounding box coordinates and passed to the next stage of the 

ALPR. A MobileNetV2-based (Sandler et al., 2018) single shot detector pipeline from the TensorFlow Object 

Detection team was the model of choice in this study. This model was chosen for its flexibility, fast inferencing 

speed without the use of GPU, and the capacity for model optimization which reduces the size of its weights and 

biases and even further increases the inferencing speed. It has an input feature size of 320 by 320 by 3 and is 

maintained by (Tf2_detection_zoo.Md, 2021). Input images are first resized from their respective input image 

sizes to 320 by 320 pixels via the OpenCV resize function and then passed to the pipeline for plate detection. 

The accuracy of the plate detection pipeline on the validation set is calculated using Equation 1. 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑙𝑖𝑐𝑒𝑛𝑠𝑒 𝑝𝑙𝑎𝑡𝑒 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑙𝑖𝑐𝑒𝑛𝑠𝑒 𝑝𝑙𝑎𝑡𝑒𝑠 𝑖𝑛 𝑑𝑎𝑡𝑎𝑠𝑒𝑡
               (1) 

3.3 Plate Number Segmentation 

In this stage, an extracted plate ROI is morphologically processed using the OpenCV open-source image 
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processing library (Opencv-python, 2021). First, the extracted plate is separated into its constituent channels and 

the mean of each channel is computed. This is to enable the system to determine the type of plate number being 

processed from the color information (Attah et al., 2016). Next, the input image is grayscale and then Otsu or 

adaptively threshold based on the average number of edges present in the input image. Next, the image is further 

cropped to remove other irrelevant information at its top and bottom by comparing the plate’s length and width 

to that of a standard Nigerian license plate. Finally, the extracted license plate strip is passed to the OCR engine 

for character recognition. Figure 1 to 5 shows the various morphological preprocessing operations in the 

segmentation step. 

 
Figure 1. A sample high-quality Input image to be preprocessed by the pipeline 

 

 
Figure 2. Extracted license plate after plate detection 

 

 
Figure 3. Grayscale image of the extracted license plate 
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Figure 4. Plate strip after Otsu thresholding and character segmentation 

 
Figure 5. Plate strip after adaptive thresholding and character segmentation 

 

3.4 Optical Character Recognition 

The plate strip from the character segmentation stage is passed to the OCR engine for character detection and 

recognition in this stage. A simple plate postprocessing approach is applied to the raw recognized raw text. First, 

whitespaces and hyphens are removed from the raw text by this technique. Following that, the algorithm pattern 

matches the raw text based on the observed license plate class. This is because government plate numbers 

frequently contain mixed character agency or state distinguishing codes, whereas private and commercial license 

plates use exclusively alphabetic local government codes. Once a valid pattern is found in the raw text, the 

algorithm extracts this matched text and uses its LGA or agency code to look up its designated state or issuer 

information. Finally, the algorithm outputs the issuer and plate number of the provided license plate strip. 

The tesseract engine is a general-purpose Long short-term memory OCR engine. It provides an avenue for using 

custom trained weights and activations bundled into a traineddata file type. Our custom traineddata was a 

finetuned base tesseract eng-fast.traineddata file (tesseract-ocr, 2021b). 700 plate images were extracted 

manually from our training dataset and were preprocessed into license plate strips samples of which are shown in 

Figure 6. These strips were then converted to the ‘.tiff’ image format and then passed to the tesseract trainer 

‘box-to-text’ script which localizes the various characters in the license plate image. Wrongly localized 

characters were manually corrected by adjusting the character information provided in the associated 

automatically generated ‘.txt’ file. All images and their ground truth files are placed into a training file used to 

fine-tune the base trained data. 

Figure 6. Sample old license plate strips for OCR engine training 
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4. Results and Discussion 

The plate detection pipeline was trained for 50,000 steps using the TensorFlow framework on the Google 

Collaboratory platform after which it obtained a final training loss of 0.095. The normalized training loss graph 

for the plate detection pipeline is shown in Figure 7. To improve its performance, the trained model was 

optimized to the TensorFlow Lite version. Instead of the standard command-line package, the OCR engine was 

implemented utilizing a python API package which increased the OCR engine's character recognition speed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 7. Plate detector model normalized training loss graph after 2,200 steps 

 

All model implementations and algorithms were compiled into a single python script and validated in a single 

step with 200 vehicle and license plate images in the validation set on a general-purpose Personal computer 

without GPU. The object detection pipeline detected all the 199 license plates (99.5 % accuracy) in the 

validation dataset at an Intersect of Union (IOU) threshold of 0.4 and achieved an average processing time of 80 

milliseconds. Figure 8 shows a snapshot of 6 different detections by the pipeline. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 8. Snapshots of 6 different detections after object detection 
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On 150 images in the collection, the OCR engine accurately recognized all plate number information, including 

the designated state or agency code. On 24 license plate photos, the engine incorrectly recognized one character, 

while the engine incorrectly recognized two or more characters on 26 license plate images. This equates to a 

license plate recognition accuracy of 75% and a single character recognition accuracy of 92%. The OCR engine 

had a processing time of 90 milliseconds on average. In addition, the system properly categorized all license 

plates in the dataset. The system takes an average of 175 milliseconds to process a license plate. This is a 

reasonable value for real-time detection in low-speed traffic. Table 1 provides information on the result of 

running the developed system on 8 different plate strips from the validation set.  

 

Table 1. OCR report of 8 different detected plates and their plates strips 

S/N Detected plate Plate Strip Ground truth OCR result Final Report 

1.  

  

KUJ-328TK KUJ328TK ABUJA KUJ-328TK 

2.  

  

AKR-123LZ AKR123EZ ONDO AKR-123EZ 

3.  

  

NND-827AE NN0827AE NN0-827AE 

4.  

  

AKR-07AP 07APAKR ONDO 07AP-AKR 

5.  

  

AAA-752FF AAAJ32FF LAGOS AAA-J32FF 

6.  

  

AGL-621FR AGL621FR LAGOS AGL-621FR 

7.  

  

WWR-919TD WWR919TD DELTA WWR-919TD 

8.  

  

WWW-234MW WWW234MW ONDO

 WWW-234MW 

 

5. Conclusion 

Using a lightweight deep learning SSD object detection pipeline, an improved character segmentation algorithm, 

and the tesseract OCR engine, this study has successfully developed a system that detected and recognized the 

plate numbers of Nigerian license plates in real-time and without the use of GPU on general-purpose PCs. 

The model used in this study detected both old and new Nigerian license plates of various sizes in the validation 

dataset and thus, demonstrates the robustness of SSD detection pipelines in fast and accurate inferencing of 

object instances that are not too small compared to the image size, as well as their generalization potential. The 

system was able to categorized license plates as private, commercial, or government, and it also provides the 

plate's issuance information. This advanced function can be used at traffic gates for precise access control. 

While the retrained OCR engine was able to differentiate identical character pairs such as ‘A' as ‘4', ‘G' and ‘6', 

and ‘2' and ‘Z', it had difficulty distinguishing ‘0' and ‘D' and ‘B' and ‘8' on fading or scratched license plates. 

Using an end-to-end multiclass SSD detection pipeline for character identification may improve accuracy 

because CNN classifiers are resistant to character rotation, breakage, or skews. To sustain the achieved rapid 

inferencing, a general-purpose PC with a better CPU will be required. 
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