Sums of Powers of Integers and Bernoulli Numbers Clarified


  •  DO TAN SI    

Abstract

This work exposes a very simple method for calculating at the same time the sums of powers of the first integers S_m(n) and the Bernoulli numbers B_m. This is possible thank only to the relation S_m(x+1)-S_m(x)= x^m and the Pascal formula concerning S_m(n) which may be explained as if the vector  n^2-n, n^3-n,...,n^(m+1)-n  is the transform of the vector S_1(n), S_2(n),...,S_m(n)  by a matrix P built from the Pascal triangle. Very useful relations between the sums S_m(n), the Bernoulli numbers B_m and elements of the inverse matrix of P are deduced, leading straightforwardly to known and new properties of them.




This work is licensed under a Creative Commons Attribution 4.0 License.
  • ISSN(Print): 1916-9639
  • ISSN(Online): 1916-9647
  • Started: 2009
  • Frequency: semiannual

Journal Metrics

Google-based Impact Factor (2017): 3.90
h-index (November 2017): 17
i10-index (November 2017): 33
h5-index (November 2017): 12
h5-median (November 2017): 19

Learn more

Contact