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Abstract 
This work exposes a very simple method for calculating at the same time the sums of powers of the first integers

( )mS n and the Bernoulli numbers mB .  This is possible thank only to the relation ( 1) ( ) m
m mS x S x x+ − = and the 

Pascal formula concerning ( )mS n which may be explained as if the vector 2 3 1, ,..., mn n n n n n+− − −  is the 
transform of the vector 1 2( ), ( ),..., ( )mS n S n S n  by a matrix P built from the Pascal triangle. Very useful relations 
between the sums ( )mS n , the Bernoulli numbers mB  and elements of the inverse matrix of P are deduced, 
leading straightforwardly to known and new properties of them.   
1. Introduction 
From the time Faulhaber (1631) published the formulae for calculating the first seventeen sums of powers of first 
integers and during nearly four centuries, many attempts for proving and extending them are performed, for 
example by Fermat, Pascal, Bernoulli, etc… as we can see in the works of Beery (2010), Coen (1996) and the 
references therein; then by many nowadays authors such as Edwards (1986), Knuth (1993), etc... 
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The results obtained are that ( )mS n may be calculated from a m terms−  recurrence relation or via a formula 
involving the Bernoulli numbers 0 1, , ,.., mB B B . The latters are calculated from its generating function or by a 
recurrence relation. We see that by these formulae the calculations of ( )mS n and mB are not so easy for big m . 
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In order to simplify the problem, we expose hereinafter an alternative method consisting of three steps. 
Firstly we will utilize operator calculus to prove the matrix formula  
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where 1P− is the inverse of the matrix
1

ij

i
P

j
+ 

= 
 

formed from the Pascal triangle. 

Secondly we utilize the well-known formula 

( 1) ( ) m
m mS x S x x+ − =  

in order to get the relations between the elements of 1P− and a set of numbers mB  defined as followed 

1

1 0
( 1) ( )m mB m S x dx+ = − +   

These relations permit the calculations of ( )mS n and mB by a simple algorithm. 
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Finally we prove that the so defined numbers mB verify the generating functions of the Bernoulli numbers and 
may conclude that this set of mB is exactly the set of Bernoulli numbers. 
2. Sums of Powers of Integers and the Pascal Matrix 
In order to calculate the sum 

 
1

1
( ) 1 2 ... ( 1)

n
m m m m

m
k

S n k n
−

=

= = + + + −   (1) 
let us consider the function 
 2 ( 1)( ) ...x x n xS x e e e −≡ + + +  (2) 
and the operator  
 2 ( 1)( ) ...x x xD D n D

xS D e e e −≡ + + +  (3) 

constructed from the derivative operator x
dD
dx

≡  . 

We have 
2 ( 1)'( ) 2 ... ( 1)x x xD D n D

xS D e e n e −≡ + + + −  
 2 ( 1)2 2"( ) 2 ... ( 1)x x xD D n D

xS D e e n e −≡ + + + −  
…. 

 2 ( 1)( ) ( ) 2 ... ( 1)x x xD D n Dm m m
xS D e e n e −≡ + + + −   (4) 

From the fundamental identity in operator calculus (Do Tan Si 2016) 

 ( ) ( )1ˆ ˆ ˆ( ) ( ) ( ) ( ) ... ( ) ( ) ...
!

k k
x x xf D g X g X f D g X f D

k
≡ + + +  (5) 

where X̂ is the Eckaert operator « multiply with the argument x » we get 

 1 ( )ˆ ˆ ˆ ˆ( ) ( ) '( ) ... ( )
1

m m m m m m
x x x x

m m
S D X X S D X S D X S D

m
− −   

≡ + + +   
   

 (6) 

Applying this identity on a constant and utilizing the property of the translation operator 
 ( ) ( )xaDe f x f x a= +  (7) 
and the fact that 
 ( ) ( )1 1 2 ... ( 1) ( )k k k

x kS D n S n= + + + − =  (8) 
we get the formula 

 1
1( ) ( )1 ( ) ... ( )

1
m m m

x x m

m m
S D x x S D x S n S n

m
−   

= + + +   
   
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+ + + + − = − + + +   
   

 

For 1x = it becomes 

 
1 12 ... ( 1) ( ) ... ( ) ( )

1 1
m m

m m

m m
n n S n S n S n

m −
   

+ + = − + + + +   −   
 

 
1 2 3 1( ) ( ) ( ) ... ( ) 1

1 2 3 1
m

m

m m m m
n n S n S n S n S n m

m −
       

− = + + + + >       −       
 

i.e. for 1m ≥  

 

1
1 2

1 1 1
( ) ( ) ... ( )

1 2
m

m

m m m
n n S n S n S n

m
+ + + +     

− = + + +     
     

 (9) 

We note that the above m terms−  recurrence formula for calculating ( )mS n  had been proven by Pascal by an 
elaborated arithmetic one may find in (Beery, 2010). 
It is not convenient to utilize for high values of m . 
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In order to better exploit the formula (9), let us consider the matrix P composed of elements of the Pascal 
triangle 

i j

1i
P for i j

j
+ 

= ≥ 
 

 

 i j 0P for i j= <  (10) 

Hereinafter P will be named Pascal matrix. With respect to P we can write (9) under the matrix form 

 

2

3

4

1

...
m

n n
n n
n n

n n+

−
−
−

−

=

2 0 0 ... 0
3 3 0 ... 0
4 6 4 ... 0
... ... ... ... ...

1 1 1
... ...

1 2
m m m

m
+ + +     

     
     

1

2

3

( )
( )
( )
...
( )m

S n
S n
S n

S n

= P

  

(11) 

The inverse matrix 1P− of P has elements 1
i jP − proportional to the determinant of the matrix obtained from P by 

omitting the thj  line and the thi column, i.e. the determinant of a matrix where all the elements situated at the 
right of the principal diagonal are equal to zero.  Moreover if i j<  at least one element of the principal 
diagonal of  is equal to zero. It results that  

 
1 0i jP for i j− = <   (12) 

Now because 1 1 ˆP P PP I− −≡ ≡ we have the formula 

 

12 2
1 11

1 13 3
2 21 22

1 1 1 14 4
3 31 32 33

1 1 11 1
1 2

( ) 0 0 ... 0
( ) 0 ... 0
( ) ... 0
.. ... ... ... ... ...... ...
( ) m m

m m m m m

S n Pn n n n
S n P Pn n n n
S n P P P Pn n n n

S n P P Pn n n n

−

− −

− − − −

− − −+ +

− −
− −

= =− −

− −

  (13) 

On behalf of this formula we may state the important theorem linking ( )mS n  with 1P− : 
« ( )mS n is a polynomial of order 1m + in n having the form  

 1 1 1 1 2 1 1
1 2 1( ) ( ... ) ... m

m m m m m m m mS n P P P n P n P n− − − − − += − + + + + + +  »    (14) 
This theorem gives the coefficients of n , 2n ,..., 1mn + and justifies the fact that (1) 0mS = , i.e. the sum of all 
coefficients in ( )mS n is equal to zero.  
By extension we propose to take 00 1= and define 
 0 0 0

0 ( ) 0 1 .. ( 1)S n n n= + + + − =  (15) 
so that coherently (0) 0 0mS for m= ≥ .  
3. Calculations of 1P−   
By (14) we see that for obtaining ( )mS n one has to calculate the elements of 1P− . 
(i) The matrix 1P− may be obtained numerically by inversion of the Pauli matrix P thank to a software. 
(ii) It may also be obtained analytically by the following method leaned firstly on the fact that a polynomial of 
order m which has more than m roots is identically equal to zero. 
In fact, let us firstly consider the polynomial 
 ( ) ( 1) ( ) m

m m mQ x S x S x x= + − −   (16) 
From (1) we have 
 1 2 1( ) ( 1) ( ) 0 , ,..., , ,....intm

m m m m mQ n S n S n n n n n n n egers+= + − − = ∀ =  
so that 
 1 2( ) ( )( )...( )m m mQ x a x n x n x n= − − −  

)n(S
...

)n(S
)n(S
)n(S

m

3

2

1

1P−
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 1 1 1 1 2 1( ) 0 ( )( )...( ) 0m m m m m m mQ n a n n n n n n+ + + += = − − − ≠  
which is a paradox unless ( ) 0mQ x = . 
From the above remark we have the equation 
 ( 1) ( ) m

m mS x S x x+ − =   (17) 
that Johnson (1986) have proven by another method. 
Secondly, following the idea of Raugh (2014), we perform an integration over x  the above equation from 0 to j
and get 

 1

0 0

1( 1) ( )
1

j j m
m mS x S x j

m
++ − =

+   

 
1 1

1 0

1( ) ( )
1

j j m
m mS x S x j

m
+ +− =

+   

 
1 1 1

0 0 0

1( ) ( ) ( )
1

j j m
m m mS x S x S x j

m
+ +− − =

+    

Summation over j from1 to ( 1)n − leads to the two-terms recurrence formula 

 

1

10 0

1( ) ( ) ( )
1

n

m m mS x n S x S n
m +− =

+    (18) 

which allows us to calculate 1( )mS x+ once ( )mS x known. 
For examples 

21

1 0 00 0
( ) ( ) ( )

2 2
n n nS n S x n S x= − = −   

3 21 2
2 1 10 0

1 1( ) 2 ( ) 2 ( ) ( ) (2 3 1)
3 2 3 2 6

n n n nS n S x n S x n n n= − = − − − = − +   

4 3 2 21 2
3 2 20 0

1 1 1( ) 3 ( ) 3 ( ) ( ) ( 1)
4 2 4 4 2 4 4

n n n n nS n S x n S x n n= − = − + − − + = −   

Thirdly, although (18) constitutes by itself a formula for obtaining sums of powers of integers established in 
1631 by Faulhaber (Beery 2010) and beyond in a simple manner, we would like to utilize the theorem (14) to 
advance further in simplicity as explained hereafter. 
(iii) Defining the set of numbers mB from the set of ( )mS x as followed 

 
1

1 0
( 1) ( )m mB m S x+ = − +    (19) 

which gives for example 

 
1 1

1 00 0

1( )
2

B S n n= − = − = −   

we get the very useful formula 

 1 10
( 1) ( ) ( )

n

m m mm S x nB S n+ ++ + =    (20) 

From the theorem (14) we see that the polynomial
0

( )
n

mS x begins with a term in 2n so that by equalizing the 

coefficients of n in both members of (20) we get the first relation between mB and the 1
m kP−  

 
1

1
1 1

1

m

m m j
j

B P
+

−
+ +

=

= −    (21) 

Afterward, by equalizing the coefficients of 2n and 2kn +  we get the interrelations between elements of 1P− : 
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11 1 1

1 10
1 1

1 1( )
2 1

m m

m j m j m
j j

P x P P
m

− − −
+

= =

− = − =
+     (22) 

 

11 1 1 1
1 10

1 1
2 1

k
m k m k m kP x P P

k m
− + − −

+ += =
+ +    (23)  

From (21) and (22) we get the relation linking 1mB + with 1
2 1mP−

+  

 

1
1 1

1 1 2 1
1

2
2

m

m m i m
i

B P P
m

+
− −

+ + +
=

= − =
+    

or 

 1 1
1 1

1

2
1

m

m m i m
i

B P P
m

− −
+

=

= − =
+    (24) 

An algorithm for calculating 1P− is possible by observing that from (24), (23)  
we get the formula 

 1 1 1
1 1 2 2

2 2 3 ( 1)! !...
1 1 2 ( )!k k k k m m

m kB P P P
k k k k m

− − −
+ + +

+= = = =
+ + + +

 (25) 

It may be described as followed 
“Departing from 

 1
1 1

1 1

1 1
2

P
P

− = =  

and utilizing (25) we get 1
0 1 12 1B P−= = then all the elements of the principal diagonal of 1P−  from 1

1 1P−  until
1

m mP− .  

Afterward, by (24) we get 1
1 1 1

1
2

B P−= − = −  then by (25) all the elements of the first parallel with respect to the 

principal diagonal of 1P−  from 1
2 1P−  until 1

1m mP−
− .  

Once again, by (24) we get 1 1
2 1 1 2 1( )B P P− −= − +  then by (25) all the elements of the second parallel with 

respect to the principal diagonal of 1P−  from 1
3 1P−  until 1

2m mP−
− . 

Repeatedly, by (24) we get kB  then by (25) all the elements of the thk parallel from 1
11kP−

+  until 1
m m kP−

− . 
Finally, by (24) we get 1mB −  then by (25) the element 

 1
1mP− .”   (26) 

This algorithm for calculating analytically all the ( )mS n and mB via the matrix 1P− needs few arithmetic 
operations comparing to the known methods.  
By this reason it is exposed in this work. We note that by (25) we have in particular 

 
1 1

1 1( 1) ... 2 1m mm P P− −+ = = =   (27) 

 1 1
1 2 1 1

1...
2m mP P B− −

− = = = = −   (28) 

We give in Appendix the first seventeen lines of 1P− . From this 17x17 submatrix one obtain the seventeen 
formulae deduced from the Faulhaber formulae (Beery 2010) for calculating 1 2 17( ), ( ),..., ( )S n S n S n and 
seventeen first values of mB . 
(iv) Another way to calculate the numbers mB once 1P− known is possible from the relation (21) which leads to 
the matrix relation 

 11B P−= −


  (29) 
where 
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 1 2 ... ... ... t
mB B B B≡


  (30) 

 1 1 1 ... ... 1 ... t≡


  (31) 
are two column vectors. 
Thank to (11), (20), (29) we may write down a beautiful formula 

 

00 2
1 1

310 2 2
1 4

3 3
20

1

10

1 ( )
( )

2 ( ) ( )
( )3 ( )

... ...
...

( )
( )

n

n

n

m
m mn

m

S x
S n nB n

S x S n nB n
S n nB P nS x

S n nB n
m S x

−

+

−

−
−

= − =

−







  (32) 

4. Generating Function of the Numbers mB   
Although our method for obtaining ( )mS n needs a set of numbers mB sufficiently well-defined from the formulae 
(19) and (24), we would like to clarify that they are indeed the well- known Bernoulli numbers.  
To prove this assertion let us utilize (29) to get the matrix formula 

 1 0PB + =


 
i.e. symbolically 

 1 1

1

1
( 1) 1 : ( 1) 0

m
m m

m k
k

m
PB B B B

k
+ +

=

+ 
+ = + = + − = 

 



  (33) 

where undefined notations kB must be replaced with kB . 
Knowing that 

 ( 1)

1
(( 1) )

!

k
B t Bt k k

k

te e B B
k

∞
+

=

− = + −   (34) 

we see that the equation 

 1 1( 1) 0 0k kB B k+ ++ − = >   (35) 

is equivalent to 

 ( 1)B t Bte e t+ − =   (36) 
On behalf of the above remark we may conclude that the numbers kB obey the relation 

 
0

:
!1

k
Bt

kt
k

t te B
ke

∞

=

= =
−    (37) 

as so as the symbolic relation (35). 
As the Bernoulli numbers are defined by the same generating function (Beery 2010) from now on we may 
assimilate the numbers kB  defined in (19), (24) with the Bernoulli number kB . 
5. Properties of ( )mS n and kB  

(i) As resumes of the hereinabove results we cite the formulae (19), (21), (29) 

 
1

1 0
( 1) ( )m mB m S x+ = − +   

 

1

1

m

m m j
j

B P−

=

= −   

 11B P−= −


 
and (25) 
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 1 1 1
1 1 2 2

2 2 3 ( 1)! !...
1 1 2 ( )!k k k k m m

m kB P P P
k k k k m

− − −
+ + +

+= = = =
+ + + +   

From (25) we have 

 

1 !
( 1)!( )!m k m k

mP B
k m k

−
−=

+ −
  (38) 

The formulae (14), (21), (38) lead to the well- known recurrence formulae 

 
1

1 0

! !
( 1)!( )! ( 1)! !

m m

m m k k
k k

m mB B B
k m k m k k

−

−
= =

= − = −
+ − − +   

i.e. 

 0

! 0
( 1)! !

m

k
k

m B
m k k=

=
− +   (39) 

as so as the formula linking ( )mS n with the kB   

1 1 1 1 2 1 1
1 2 1( ) ( ... ) ... m

m m m m m m m mS n P P P n P n P n− − − − − += − + + + + + +  

 

2 1
1 0

1( ) ...
2 1

m
m m m

mS n B n B n B n
m

+
−= + + +

+
  (40) 

  1

0

!
( 1)!( )!

m
k

m k
k

m B n
k m k

+
−

=

=
+ −    (41)  

(ii) An interesting property of kB cited in Coen (1996) has been proven by the remark that the function 

 0

1 coth
2 2 2 2 ! 21 1

t k

kt t
k

t t t e t t t tB
ke e

∞

=

++ = = = +
− −    (42) 

is even so that  

 
1

1
2

B = −   (43) 

and 
 2 1 0 1kB k+ = ∀ ≥    (44) 
(iii) New relations between the numbers kB  may be obtained from the property 1 ˆPP I− ≡ .   
In fact we see that the first column vector of 1P−  

 
1 1 1 1

1 11 21 31 1.... ....00
t

nC P P P P− − − −≡


  (45) 
is perpendicular to the thj line vector jL


of P for 1 j< so that 1C


is perpendicular with all combinations of the 

vectors jL


with 1 j< . 
The first are  

2 33...........L ≡


 

3 464...........L ≡


 

   ….   ..... 

15 16120 560 1820 4368 8008 11440 12870 11440 80084368 182056012016L ≡


 

The first interesting linear combinations of them and their implications are 
 
 

jL

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11...........  1 1
21 11 0P P− −+ =  

012...........  1 1 1
31 21 112P P P− − −= − =  

0001...........  1
41 0P− =  

00103...........  1 1
51 313P P− −= −  

000001...........  1
61 0P− =  

0000101...........  1 1
71 51P P− −= −  

00000001...........  1
81 0P− =   

000000905........  1 1
91 715 9P P− −= −  

0000000001.........  1
10 1 0P− =  

0000000 2509.........  1 1 1
111 9 1 7 1

25 55
9 12

P P P− − −= − = =  
000 0000 00001........  1

12 1 0P− =  
0000000000(691) 0 (175)........  1 1

13 1 11 1
691 691
175 420

P P− −= − = −
 

00000000000 0 01........  1
14 1 0P− =  

0000000000( 21) 0 0 01........−   1 1
15 1 111

3521
4

P P− −= =  

 
00000000000 0 0 001........  1

16 1 0P− =   (46) 

We may conclude that there exist relations between any two Bernoulli numbers via the relation

1
1 1

2
1m mB P

m
−

+=
+

 that we may calculate as shown in (46), for example 

1 1
14 15 1 11 1 10

2 2 2 11 77 5 721 21
15 15 15 2 5 66 6

B P P B− −= = = = =  

6. Remarks and Conclusion 
We think that this work is a noticeable contribution to the comprehension and the practical calculations of sums 
of powers of integers and the Bernoulli numbers via the inverse of the Pascal matrix, denoted herein by 1P− . The 
algorithm for calculating the matrix 1P− needs few arithmetic operations. In fact, because nearly haft of the kB and 
the 1

k mP−  with m k< are null and 1
k kP− , 1

1k kP−
−  are known, one needs less than 2( 1) / 2m −  

additions/multiplications of rational numbers in order to obtain the m first values of kB and m fulfilled parallels 
with respect to the principal diagonal of 1P− . For example it needs only 35 such operations to get 10B , 10 ( )S n ; 
100 for 17 Faulhaber formulae; about 4.000  for 100B  , 100 ( )S n . 
For arriving to these results we are indebted to the antecedent works of many, many authors, especially of our 
great Pascal and of Rough M. who had the famous idea of integrating the equation ( 1) ( ) m

m mS x S x x+ − =  from 
which we discover the relations between the universal matrix 1P− , the sums ( )mS n  and the set mB . 
The author is conscientious that there are properties of Bernoulli numbers it is interesting to be explored by the 
method discussed in this work, especially the theorem of Von Staudt-Clausen, the Kummer theorem, the 
Euler-Mclaurin formula, the relations between Bernoulli numbers and the zeta function, etc...one can find easily 
in literature.  
The author dedicates this work to the memory of Nguyen Thai Binh, an example for a whole generation of 
abroad students like him fifty years ago.  
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Appendix 

1) The 17 first Bernoulli numbers 

 
{ }0 17

1 1 1 1 1 5 691 7 3617,....., 1, , , 0, , 0, ,0, ,0, ,0, ,0, ,0, ,0
2 6 30 42 30 66 2730 6 510

B B − ≡ − − − − 
 

 

2) The 17x17 sub-matrix of the matrix 1P−  
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