Reactive Oxygen Species Registration in Planarian Regeneration
- Kh. P. Tiras
- S. V. Gudkov
- V. I. Emelyanenko
- K. B. Aslanidi
Abstract
Reactive oxygen species (ROS) are directly involved in cell proliferation, differentiation and apoptosis in a variety of organisms. We studied kinetics of own luminescence induced by changes of ROS in early stages of planarian regeneration. Kinetics of chemiluminescence were measured in intact planarians and the same individuals after decapitation within 15 hours. We analyzed the traumatic fluorescent signal obtained as the difference between kinetics of intact and decapitated planarians. It was found that regeneration is accompanied by changes in the content of ROS correlated with the energy-intensive process in regenerating planarians. Oxidative stress was caused by damage to cell membranes in the dissection of the planarian and it was accompanied by a drop in the intensity of luminescence with a time constant of about 3.6 hours. Phagocytosis of dying cells by neoblasts was accompanied by an increase of the luminescence intensity after 2 - 3 hours after decapitation. Neoblast mitosis was described by two maximums of luminescence over 5.1 hours and 8.3 hours after decapitation. For the first time we demonstrated the opportunity of registering the physiological state of pluripotent stem cells at the level of the organism in vivo.
- Full Text: PDF
- DOI:10.5539/apr.v7n6p13
Journal Metrics
Google-based Impact Factor (2017): 3.90
h-index (November 2017): 17
i10-index (November 2017): 33
h5-index (November 2017): 12
h5-median (November 2017): 19
Index
- Bibliography and Index of Geology
- Civil Engineering Abstracts
- CNKI Scholar
- CrossRef
- EBSCOhost
- Excellence in Research for Australia (ERA)
- Google Scholar
- Infotrieve
- LOCKSS
- NewJour
- Open J-Gate
- PKP Open Archives Harvester
- SHERPA/RoMEO
- Standard Periodical Directory
- Ulrich's
- Universe Digital Library
- WorldCat
Contact
- William ChenEditorial Assistant
- apr@ccsenet.org