Derivation of a Relativistic Wave Equation more Profound than Dirac’s Relativistic Wave Equation
- Koshun Suto
Abstract
The author has previously derived an energy-momentum relationship applicable in a hydrogen atom. Since this relationship is taken as a departure point, there is a similarity with the Dirac’s relativistic wave equation, but an equation more profound than the Dirac equation is derived. When determining the coefficients and β of the Dirac equation, Dirac assumed that the equation satisfies the Klein-Gordon equation. The Klein-Gordon equation is an equation which quantizes Einstein's energy-momentum relationship. This paper derives an equation similar to the Klein-Gordon equation by quantizing the relationship between energy and momentum of the electron in a hydrogen atom. By looking to the Dirac equation, it is predicted that there is a relativistic wave equation which satisfies that equation, and its coefficients are determined. With the Dirac equation it is necessary to insert a term for potential energy into the equation when describing the state of the electron in a hydrogen atom. However, in this paper, a potential energy term is not introduced into the relativistic wave equation. Instead, potential energy is incorporated into the equation by changing the coefficient of the Dirac equation.
- Full Text: PDF
- DOI:10.5539/apr.v10n6p102
Journal Metrics
Google-based Impact Factor (2017): 3.90
h-index (November 2017): 17
i10-index (November 2017): 33
h5-index (November 2017): 12
h5-median (November 2017): 19
Index
- Bibliography and Index of Geology
- Civil Engineering Abstracts
- CNKI Scholar
- CrossRef
- EBSCOhost
- Excellence in Research for Australia (ERA)
- Google Scholar
- Infotrieve
- LOCKSS
- NewJour
- Open J-Gate
- PKP Open Archives Harvester
- SHERPA/RoMEO
- Standard Periodical Directory
- Ulrich's
- Universe Digital Library
- WorldCat
Contact
- William ChenEditorial Assistant
- apr@ccsenet.org