Prediction of Gas Holdup in a Three-Phase Internal Loop Airlift Fluidized Bed Reactor Using Newtonian and non-Newtonian Liquids
- Sivakumar Venkatachalam
- Akilamudhan Palaniappan
- Kannan Kandasamy
Abstract
The effect of superficial gas and liquid velocities, particle diameter and sphericity, physical and rheological properties of liquids on gas holdup were studied in a three phase internal loop airlift fluidized bed reactor. Air was used as a gas phase. Water, n-butanol, various concentrations of glycerol (60% and 80%) were used as Newtonian liquids and different concentrations (0.25%, 0.6% and 1.0%) of carboxy methyl cellulose (CMC) solutions were used as non-Newtonian liquids. Spheres, Bearl saddle and Rasich ring with different diameters were used as solid phases. Superficial gas velocity varied from 0.000142 m/s to 0.005662 m/s and superficial liquid velocity varied from 0.001 to 0.12 m/s. The experimental result shows that increase in particle size and superficial gas velocity increases gas holdup and decreases with increase in concentration of Newtonian and non-Newtonian systems. Based on the experimental results a separate correlation was developed to predict gas holdup for both Newtonian and non-Newtonian liquids for wide range of operating conditions.
- Full Text: PDF
- DOI:10.5539/mas.v4n9p110
Journal Metrics
(The data was calculated based on Google Scholar Citations)
h5-index (July 2022): N/A
h5-median(July 2022): N/A
Index
- Aerospace Database
- American International Standards Institute (AISI)
- BASE (Bielefeld Academic Search Engine)
- CAB Abstracts
- CiteFactor
- CNKI Scholar
- Elektronische Zeitschriftenbibliothek (EZB)
- Excellence in Research for Australia (ERA)
- JournalGuide
- JournalSeek
- LOCKSS
- MIAR
- NewJour
- Norwegian Centre for Research Data (NSD)
- Open J-Gate
- Polska Bibliografia Naukowa
- ResearchGate
- SHERPA/RoMEO
- Standard Periodical Directory
- Ulrich's
- Universe Digital Library
- WorldCat
- ZbMATH
Contact
- Sunny LeeEditorial Assistant
- mas@ccsenet.org