Advanced Approach in Sensitive Rule Hiding
- K. Duraiswamy
- D. Manjula
- N. Maheswari
Abstract
Privacy preserving data mining is a novel research direction in data mining and statistical databases, which has recently been proposed in response to the concerns of preserving personal or sensible information derived from data mining algorithms. There have been two types of privacy proposed concerning data mining. The first type of privacy, called output privacy, is that the data is altered so that the mining result will preserve certain privacy. The second type of privacy, called input privacy, is that the data is manipulated so that the mining result is not affected or minimally affected. For output privacy in hiding association rules, current approaches require hidden rules or patterns to be given in advance. However, to specify hidden rules, entire data mining process needs to be executed. For some applications, only certain sensitive rules that contain sensitive items are required to hide. In this work, an algorithm ISSRH (Increase Support Sensitive Rule Hiding) is proposed, to hide the sensitive rules that contain sensitive items, so that sensitive rules containing specified sensitive items on the right hand side of the rule cannot be inferred through association rule mining. Example illustrating the proposed approach is given. The characteristics of the algorithm are discussed.- Full Text: PDF
- DOI:10.5539/mas.v3n2p98
This work is licensed under a Creative Commons Attribution 4.0 License.
Journal Metrics
(The data was calculated based on Google Scholar Citations)
h5-index (July 2022): N/A
h5-median(July 2022): N/A
Index
- Aerospace Database
- American International Standards Institute (AISI)
- BASE (Bielefeld Academic Search Engine)
- CAB Abstracts
- CiteFactor
- CNKI Scholar
- Elektronische Zeitschriftenbibliothek (EZB)
- Excellence in Research for Australia (ERA)
- JournalGuide
- JournalSeek
- LOCKSS
- MIAR
- NewJour
- Norwegian Centre for Research Data (NSD)
- Open J-Gate
- Polska Bibliografia Naukowa
- ResearchGate
- SHERPA/RoMEO
- Standard Periodical Directory
- Ulrich's
- Universe Digital Library
- WorldCat
- ZbMATH
Contact
- Sunny LeeEditorial Assistant
- mas@ccsenet.org