Aesthetic Curve Design with Linear Gradients of Logarithmic Curvature/Torsion Graphs
- R. U. Gobithaasan
- Kenjiro T. Miura
- L. P. Yee
- A. F. Wahab
Abstract
The quality of a curve for industrial design and computer graphics can be interrogated using Logarithmic Curvature Graph (LCG) and Logarithmic Torsion Graph (LTG). A curve is said to be aesthetic if it depicts linear LCG and LTG function. The Log-aesthetic curve (LAC) was developed bearing this notion and it was later extended to a Generalized Log-aesthetic curve (GLAC) using the -shift and -shift approach. This paper reformulates GLAC by representing the Logarithmic Curvature and Torsion graph’s gradient function as a nonlinear ordinary differential equation (ODE) with boundary conditions. The outputs of solving the ODEs result in a well defined Cesaro equation in the form of curvature function that is able to produce both planar as well as spatial curves with promising entities for industrial product design, computer graphics and more.
- Full Text: PDF
- DOI:10.5539/mas.v8n3p24
Journal Metrics
(The data was calculated based on Google Scholar Citations)
h5-index (July 2022): N/A
h5-median(July 2022): N/A
Index
- Aerospace Database
- American International Standards Institute (AISI)
- BASE (Bielefeld Academic Search Engine)
- CAB Abstracts
- CiteFactor
- CNKI Scholar
- Elektronische Zeitschriftenbibliothek (EZB)
- Excellence in Research for Australia (ERA)
- JournalGuide
- JournalSeek
- LOCKSS
- MIAR
- NewJour
- Norwegian Centre for Research Data (NSD)
- Open J-Gate
- Polska Bibliografia Naukowa
- ResearchGate
- SHERPA/RoMEO
- Standard Periodical Directory
- Ulrich's
- Universe Digital Library
- WorldCat
- ZbMATH
Contact
- Sunny LeeEditorial Assistant
- mas@ccsenet.org