Minimization of Negative Log Partial Likelihood Function Using Reproducing Kernel Hilbert Space
- Nur'azah Abdul Manaf
- Ibragimov Gafurjan
- Mohd. Rizam Abu Bakar
Abstract
Reproducing kernel Hilbert space (RKHS) can be used to estimate values of functions, derivatives and integrals of models. The RKHS kernels are useful in finding the optimizer of the general Cox regression model. The procedure in the minimization of the negative log partial likelihood function is being demonstrated in this paper. Partial differentiation of the loss function is performed to determine the optimal values of .- Full Text: PDF
- DOI:10.5539/mas.v8n1p140
This work is licensed under a Creative Commons Attribution 4.0 License.
Journal Metrics
(The data was calculated based on Google Scholar Citations)
h5-index (July 2022): N/A
h5-median(July 2022): N/A
Index
- Aerospace Database
- American International Standards Institute (AISI)
- BASE (Bielefeld Academic Search Engine)
- CAB Abstracts
- CiteFactor
- CNKI Scholar
- Elektronische Zeitschriftenbibliothek (EZB)
- Excellence in Research for Australia (ERA)
- JournalGuide
- JournalSeek
- LOCKSS
- MIAR
- NewJour
- Norwegian Centre for Research Data (NSD)
- Open J-Gate
- Polska Bibliografia Naukowa
- ResearchGate
- SHERPA/RoMEO
- Standard Periodical Directory
- Ulrich's
- Universe Digital Library
- WorldCat
- ZbMATH
Contact
- Sunny LeeEditorial Assistant
- mas@ccsenet.org