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Abstract

Reproducing kernel Hilbert space (RKHS) can be used to estimate values of functions, derivatives and integrals
of models. The RKHS kernels are useful in finding the optimizer f(s)=23a,K(s,t) of the general Cox

regression model. The procedure in the minimization of the negative log partial likelihood function is being
demonstrated in this paper. Partial differentiation of the loss function is performed to determine the optimal
values of f'(s).
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1. Introduction

The theory of reproducing kernel is a powerful instrument in many areas of mathematical research. See, for
example, Aronszajn (1950), Hille (1972), Burbea (1976), Wahba (1998), Berlinet et al. (2003), Li et al. (2003).
Many researchers had shown that there exist strong connection between the problems of applied sciences,
mathematical analysis, and many areas of engineering. Many statistical problems can also be solved and data can
be analyzed using models related to reproducing kernel Hilbert space (RKHS). RKHS enables us to estimate a
variety of mathematical models. A simple linear kernel was used by Li et al. (2003) in Cox regression models to
relate expression profiles of censored cancer data sets. N. Abdul Manaf et al. (2011) generated a new kernel to
determine the function f(s)=> a,K(s,s;) of the general Cox model and utilized partial derivatives of the

negative log partial likelihood to find the optimal values for the HIV patients survival data.

1.1 Reproducing Kernel Hilbert Space (RKHS)

On a domain Ts, let Hs be a Hilbert space such that there exists an element u, € Hg for every 7€ 7, and the

inner product in H is f(t)=<py,, f >, forevery fe H;. Let K(s,t)=<p,, 4 >. Then, K is a positive

definite kernel on 7 X7, , meaning that } a;a; K(t;,t;,)20 for every f.,,...1,€T and K is the
i

reproducing kernel for H;. Inner product < K(¢,-),K(s,-)>= K(s,t) gives the originality of “reproducing
kernel”.
1.2 Moore-Aronszajn Theorem

The Moore-Aronszajn theorem mentioned by Berlinet and Thomas-Aqgnan (2003) states that every kernel K
which is symmetric and positive definite on a set 7 defines an incomparable RKHS (Berlinet & Thomas-Aqnan,
2003).

The following process shows the construction of space H (Berlinet & Thomas-Aqnan, 2003).

Let K, =K(s,s;) forall sin 7,. Let Hybe the linear span of {K, :s€T,}. Suppose the dot product on Hj is
defined as

2 ab;K(y;.s;).

m N
i=1 j=1

<l§l 4K, ng ijyj > =

1
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The symmetry of K generates the symmetry of the dot product.

If we let H be the complete set of H, with respect to the above dot product, then H; is the compilation of
functions

f©)=ZaK, ()

We observed from the Cauchy-Schwarz inequality that this series converges for every x. We obtain the inner
product

(7K} =(Eak, K, )= £ aK(.0= 16

from the reproducing kernel properties.
1.3 Kernel Method and Its Application
Manaf et al. (2011) used K(x,y)=<Cx,Dy> toobtain f(x) for the general Cox model

A (t| x;) = Ay () exp(f(x;))

A regularized formulation of Cox regression, R (f) was considered as a problem in terms of RKHS,

reg
Hy ,and
. 1z 2
min Ry (/)= 3 V(1,6 /() + El71,
where V(t;,0,, f(x;)) is the loss function which depends on f(x) at points { f(x )} . The norm defined in

H, is denoted by | fH where f=b+h, he H,beR,and £>0 isatuning parameter. For the general
Cox model, ¢ is the survival time when é' =1, andis the censoring time when 0, =0.

i

The use of negative log partial likelihood function in the regression model
A (t| x,) = A () exp(f(x,))

leads us to find the function f(x) that minimizes
1 x 2
Reg(f)==—2.5 {f(x,-) - log{ p) exp(f(xl-)H +& A, -
i= JER;

where R =1{j:1,21¢,,j=12,.,n} is the set of HIV patients who were at risk at 7,. The solution of this
problem was given by Kimeldorf and Wahba and is known as the representer theorem in which the optimizer
function f(s) has the form (Kimeldorf & Wahba, 1971)

n
f(s)=c+ Zlai K(s,s;),
iz
where K is the reproducing kernel of H, . Constant ¢ can be omitted in the solution procedure because it can be
absorbed into baseline hazard function.

2. Formulas for Partial Derivatives of Loss Function

Our task is to find the function f(x)= Z a,K(x,x;) when the optimal values of vector a =(q,,4,,...,a,) are
applied. We need to minimize

R, (f)= ——25 [f(x )—log{Z exp(/ (x, ))H +&r1, (1)
which is equivalent to minimizing of
LSt Sawe| Fonts el T, o

where R, = {j 2t )= 1,2,...,11} is the set of individuals who were at risk at time ¢,.

We can state the negative log-likelihood function as follows:
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R, (N=-234 [f(x» - ln{Z exp(f (x; ))H +elr,

l n n 1 n n n
= —;;ai (;51.K(xj,xi)j+;;§i ln{Bl(l.)}+§lZ:1:ai [;ajK(xi,xj)J.

R, (f) is minimized by using the Newton-Raphson method. We give an illustrative example for R, .

reg

Letn=4 and ¢, =1,1, =5, =6, t, =8. Then
Ro={j:t,24,j=1234}={1,234},

Ry ={j:t;zt,,j=12734}={2,3,4},
Ry={j:t;2t,,j=1,2,3,4]={34},
R, ={;: .24,]_1234} (4.

Let 4= —125 f(x;), the first term of (2). Then

j =1

=——225a1<(x,,x) ——Za (25 K(x,,x>J (3)

lljl

We obtain from (3) that
d4
=D S K, p =l @
P J=1
and
2
0" 4 =0,p=1,..,n (5)
da,da
Let the second term of (2) be denoted by
= —26 1n{z exp(f (x; ))}
JER

Then by definition of f(x;) we get

=_25 ln{z exp[ZakK(xj,xk J}:%i(xlnzzw (6)

JER

where

1(1) Zexp[ZakK(x],xk j

JER;

Find partial derivatives of B . We have from (6) that

_=_Zn: . al(t) =_Z§_ ZK(x/’x )exp(ZakK(x/,xk)] =12,....n
a

i=1 1(1) p Bl(l) JER;
Denote
B 95 “” K K
o) = Z (x;,x,)exp Zak (x;,%,)
p JER,

Then, clearly
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0B _ 1 . By

==Y , 7
da, ni=l By, ?
and so
B 'asz(i) _ _aBl(i)
1(i 2p(i
9°B =i B d <& 5 sz(l) :l n 5. (@) aaq p(i) aaq
da,da, da, aap aaqll B, niI’ By,
This gives
9’B 1 ( n ) B, iy Bag i)
0. K(x;,x )K(x;,x,6)ex aK(x;,x) |-—E5—L= |, pg=12,....n, 8
aapaa nlzi (Bl(i) jeZRl_ (J p) (] q) p kgl k (J %) 312(1) p.q ®)
0B,
(@)
where B, ., =——.
40 = 34,

Let C=¢ || f "211 . Then by definition of f'we obtain

i=l j=1 i=1
Iip

C=§iiaa K(x;,x;)= fZa [Za K(x;,x; )J Za [Za K(x;,x; )J+a Za K(x,,x;)

Hence

oC
oa, zf(l lleipa K (x;,x,)+ Za K(x, xj)+apK(xp,xp)j.

This can be written as follows:

oC

=& ZaK(x,,x )+Za K(x,,x)) )
aaP i=l1
i#p
and hence
’C _
o =&(K(x,.x,)+K(x,.%,)) = 26K (x,.x,) (10)
P 7q
since K(x,,x,)=K(x,,x,).

3. Result and Discussion

Let K(x,,x,)=<x,,x >, f(xj)=2al.K(xj,xl.) , x; = (gender, age, race), and /7.l.(t|xl.)=/10(t)exp(f(xi)),
i=l

which is the hazard function for Cox model where ¢, is lifetime of the i th patient. Then we have to include the
following equations to use the Newton-Raphson method:

=——za(251<(x,ax)}+ 25”1{ 1(1)}+5(
J

ni=1

[él ajK(xi’xf)J+ apélajK(xp,xj)j,

i=li#p

Using the partial derivatives obtained above, we have

IR _ ZﬁK(x X, )+ 25 5o f[ZaK(xl,x )+Za K(x,,x ])j
aap ni=l1 Bl(l) i=1

and
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*R 1y 1 n
- _25[(— > K(xj,xp)K(xj,xq)exp(glakl((xj,xk))

aapaaq ni=l | By, jek;
By iy Bayi
— P(l; q(i) J+2§K(xp’xq)’
1(9)

where

By, = ieZ}:eAexp(kglakK(xj,xk)), R ={j:t;2t;,j=12,..n},
sz([):jezl“e.K(xj,xp)exp(glakK(xj,xk)j, p=12,...,n,

qu(i) = /ezila K(xj,xq)exp(kzz“lakK(xj,xk)j , q=12,....n.

We used the kernel K(x,y)=<Cx,Dy>, where C and D are diagonal matrices (Manaf et al., 2011). We had

verified the positive definiteness and symmetrical properties of kernel K. Our research and observations show

that the greater the values of function f(s)= ia,- K(s,s;), the less chance of survival among the HIV patients
i=1

chosen in random. This is shown in the following Figure 1.

Q [T 1
- LI L L L L
Q@ _|
o
;v ]
g @ |
? o
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§ o
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o e f(x)>0
e f(x)<0
o _| Original Data
o
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Time to death

Figure 1. Survival of HIV patients

Using the Newton-Raphson method the optimal values of ¢, is obtained by setting the derivatives with respect
to a in R to zero. We compared the result with the Gaussian Radial Basis function kernel,

K(x,x;)= exp(—%(x - X, X— x,.>j . Our result is shown in Table 1.
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Table 1. Results of Two Different Kernels

K(x,xl.)=<Ax,Bxl.> K(x,xi)=exp{—%<xi - X, X, —x>}

i ) exp(f(x) £(x) exp(f(x,))
1 -6.571328e-03 1.0803817 2.9458038 0.129739937 0.18785887 1.2066632
2 3.818778¢e-04 1.1058087 3.0216670 0.173914696 0.14436110 1.1553012
3 -6.358875e-04 1.3355435 3.8020618 0.218131636 0.23427598 1.2639933
4 -1.701724¢e-03 1.5978747 49425169 0.116957073 0.15375643 1.1662068
5 -3.052682¢-03 1.1776466 3.2467242 0.136644639 0.18991145 1.2091425
6 3.269568¢-03 1.0421580 2.8353290 0.079175542 0.15908422 1.1724367
7 4.034653e-03 0.9161683 2.4996940 0.116962975 0.16858607 1.1836301
8 2.396903¢-03 0.7243128 2.0633128 0.081691220 0.25496977 1.2904226
9 2.878405e-03 0.6907156 1.9951427 0.160807013 0.25418269 1.2894073
10 7.937093e-04 0.4774516 1.6119613 0.174749874 0.26432793 1.3025553
11 2.369007¢-03 0.6303122 1.8781969 0.177146810 0.24826214 1.2817959
12 2.997758e-03 0.6639095 1.9423712 0.139188313 0.24145605 1.2731015
13 -1.544913e-03 0.4408361 1.5540060 0.005409531 0.18045094 1.1977574
14 7.542037¢-03 0.3090386 1.3621150 0.175677868 0.15535025 1.1680670
15 -3.121462¢-04 0.4794866 1.6152450 0.138615666 0.19745615 1.2182996
16 -8.216203e-04 -1.4328849 0.2386195 -0.059706201 -0.22576971 0.7979018
17 -1.165802e-02 -1.2574178 0.2843874 -0.176235680 -0.33967263 0.7120034
18 -8.956521e-03 -0.9429187 0.3894894 -0.123189140 -0.12618218 0.8814543
19 -5.895857e-05 -0.1223129 0.8848715 -0.152238094 -0.04239335 0.9584927
20 -2.303194¢-03 -0.8080547 0.4457243 -0.122136320 -0.21545565 0.8061740
21 1.335727e-03 -0.4900623 0.6125882 -0.057326269 -0.17656795 0.8381418
22 -8.834102e-04 -0.2413472 0.7855688 -0.398832658 -0.43254441 0.6488560
23 -3.405090e-03 -1.1368092 0.3208411 -0.403182560 -0.47979802 0.6189084
24 -1.861149¢-03 -1.0806055 0.3393900 -0.127591108 -0.32483308 0.7226480
25 2.185279e-04 -0.4989532 0.6071659 -0.045261685 -0.08283722 0.9205010
26 1.289077¢-03 -1.1368092 0.3208411 -0.024314446 -0.47979802 0.6189084
27 -4.513436¢-03 -0.2686450 0.7644146 -0.110502264 -0.44325517 0.6419434
28 2.688869e-02 -0.5399496 0.5827777 -0.129127364 -0.42241788 0.6554601
29 1.314224¢-03 -0.7378419 0.4781447 -0.025176529 -0.07878944 0.9242345
30 4.379507¢-03 -0.4496570 0.6378469 -0.080555841 -0.43651604 0.6462841

4. Conclusion

Several other kernels can be generated and then applied to different sets of data. It is important that we are able
to verify that the kernels fulfill all the rules and theories of RKHS. The derivatives used in this RKHS method
are applicable to all kernels used to determine f(x) in the Cox hazard function models. It should be noted that
RKHS kernels can be used in models of several research areas such as in business, engineering and medical
sciences because of the connection between data distributions and kernels. In fact, more researches can be
performed to show that RKHS method can solve many other problems that involve mathematics and statistics.
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