Patterns and Implications of Hydrologic Regime Change in Chongwe River, Zambia

  •  Moses Chisola    
  •  Michal Kuráž    


Conflicts regarding water use have emerged in some small irrigation dominated peri-urban catchments in Zambia; Chongwe being one such catchment. Despite these conflicts suggesting a change in hydrologic regime, the nature of the changes and their drivers has not been adequately investigated. The Mann Kendall trend test and Flow Duration Curves were used to investigate changes in hydro-climatic time series data in Chongwe upper catchment for the period 1955-2006. Although the results reviewed a significant upward trend in temperature at 0.05 significance level, there is no significant trend in rainfall. Annual and seasonal runoff at the upstream located Ngwerere weir reviewed significant upward trends at 0.05 significance level. This increased runoff which is attributed to sewer water discharge and increased imperviousness is abstracted for agricultural activities upstream. In this regard, results reviewed no significant trend in runoff at the outlet gauging station (Chongwe 5025). However, analysis of the Flow Duration Curves at this outlet gauging station indicated an increase in wet season flows and a reduction in dry season flows for the 1990-2006 period. These results suggest that human activities in the upstream parts of the catchments could be the major contributing factors to the changes in flow regime, hence the ensuing upstream vs downstream water use conflicts. However, there is still excess runoff in the wet season that could be harvested by downstream water users in order to offset the deficit in downstream dry season flows.

This work is licensed under a Creative Commons Attribution 4.0 License.
  • ISSN(Print): 1916-9779
  • ISSN(Online): 1916-9787
  • Started: 2009
  • Frequency: semiannual

Journal Metrics

(The data was calculated based on Google Scholar Citations)

Google-based Impact Factor (2018): 11.90

h-index (January 2018): 17

i10-index (January 2018): 36

h5-index (January 2018): 13

h5-median(January 2018): 15