GIS Cellular Automata Using Artificial Neural Network for Land Use Change Simulation of Lagos, Nigeria

  •  onuwa okwuashi    
  •  Mfon Isong    
  •  Etim Eyo    
  •  Aniekan Eyoh    
  •  Okey Nwanekezie    
  •  Dupe Nihinlola Olayinka    
  •  Daniel Okon Udoudo    
  •  Beulah Ofem    


Tremendous land use change has occurred in Lagos in recent times. Modelling urban systems now extends beyond the use of geographic information systems models. This research therefore presents a loose coupling of geographic information systems and artificial neural network for simulating land use change in Lagos. The experiment is based on three land use epochs of Lagos: 1963-1978, 1978-1984, and 1984-2000. Twelve salient land use explanatory variables (distance to water, distance to residential structures, distance to industrial and commercial centres, distance to major roads, distance to railway, distance to Lagos Island, distance to international airport, distance to international seaport, distance to University of Lagos, distance to Lagos State University, income potential, and population potential) are used for the simulation. Using the Kappa statistic, the result of the simulation in terms of the order of best-fit of the reference data is: 1978-1984, 1984-2000, and 1963-1978. An evaluation of the simulation using the receiver operating characteristics corroborates the Kappa estimates. A non black-box experiment using a one-neuron neural network to assess the performance of the spatial independent variables used for the simulation indicates that for all three epochs distance to residential structures has the highest impact in the simulation while population potential has the lowest impact.

This work is licensed under a Creative Commons Attribution 4.0 License.
  • ISSN(Print): 1916-9779
  • ISSN(Online): 1916-9787
  • Started: 2009
  • Frequency: semiannual

Journal Metrics

(The data was calculated based on Google Scholar Citations)

Google-based Impact Factor (2018): 11.90

h-index (January 2018): 17

i10-index (January 2018): 36

h5-index (January 2018): 13

h5-median(January 2018): 15