How a New Paradigm Explains Topographic Map Drainage System and Erosional Landform Evidence in the Fremont County Royal Gorge Area, Colorado, USA


  •  Eric Clausen    

Abstract

A new Cenozoic geologic and glacial history paradigm (new paradigm) describes massive and prolonged continental ice sheet meltwater floods that eroded the Colorado Royal Gorge area and surrounding regions and which were diverted in east, northeast, and even north directions as uplift of a thick ice sheet created deep “hole” rim gradually occurred (the thick ice sheet was located where North American ice sheets are usually recognized to have existed). A deep “hole” rim segment followed what is now the northern and central Colorado east-west continental divide southward to the Arkansas River headwaters area and then continued south along the Sangre de Cristo Mountains crestline to at least the Purgatoire River-Canadian River drainage divide and may have continued east from that point along a less well-defined zone beginning with what is now the Purgatoire River-Canadian River drainage divide. Diverging and converging valley complexes, barbed tributaries, and Arkansas River and other drainage route direction changes (easily seen on United States Geological Survey detailed topographic maps) are interpreted to have developed as the south-oriented floodwaters first flowed across the rising deep “hole” rim to reach the south- and southeast-oriented Rio Grande River drainage basin and were subsequently blocked by deep “hole” rim uplift and diverted to flow in east, northeast, and north directions. The accepted Cenozoic geologic and glacial history paradigm (accepted paradigm) has to date been unable to satisfactorily explain the detailed topographic map drainage system and erosional landform evidence and the new and accepted paradigms are incommensurable and lead to quite different Cenozoic geologic and glacial histories.



This work is licensed under a Creative Commons Attribution 4.0 License.
  • ISSN(Print): 1916-9779
  • ISSN(Online): 1916-9787
  • Started: 2009
  • Frequency: semiannual

Journal Metrics

(The data was calculated based on Google Scholar Citations)

Google-based Impact Factor (2018): 11.90

h-index (January 2018): 17

i10-index (January 2018): 36

h5-index (January 2018): 13

h5-median(January 2018): 15

Contact