North Platte River-South Platte River Confluence Area Drainage System History as Determined by Topographic Map Interpretation: Western Nebraska, USA
- Eric Clausen
Abstract
Detailed topographic maps of the western Nebraska North Platte River-South Platte River confluence area show a low relief and gently sloping southeast-oriented upland surface, asymmetrical drainage divides, nearly adjacent and parallel east-oriented North and South Platte River valley segments, barbed tributaries, and shallow divide crossings (low points along drainage divides) in a region south of the Nebraska Sand Hills and at the Nebraska loess region’s western margin. Published interpretations of North and South Platte River confluence area landforms (referred to as the accepted paradigm) do not explain most drainage features and are compared with a new paradigm’s interpretations to determine which of the two paradigms explains the regional drainage history and related surface features in a simple and consistent manner. New paradigm interpretations require large sheets of slowly-moving southeast-oriented water to have flowed toward what was probably an actively eroding Republican River valley and to have shaped the upland surface while the Platte and North and South Platte River valleys eroded headward into and across the region so as to create the asymmetric drainage divides, barbed tributaries, and shallow divide crossings. These new paradigm interpretations are consistent with each other and with recently published new paradigm interpretations of upstream North and South Platte River drainage system history. New paradigm interpretations also suggest the adjacent Nebraska Sand Hills developed on a large flood deposited delta (typical of sand dune areas on former glacial lake deltas further to the north) and the slowly-moving sheets of water may have been responsible for some or all of Nebraska’s loess deposits, although the new paradigm leads to a fundamentally different middle and late Cenozoic regional geologic and glacial history than what workers using the accepted paradigm have described.
- Full Text: PDF
- DOI:10.5539/jgg.v12n2p28
Journal Metrics
(The data was calculated based on Google Scholar Citations)
Google-based Impact Factor (2018): 11.90
h-index (January 2018): 17
i10-index (January 2018): 36
h5-index (January 2018): 13
h5-median(January 2018): 15
Index
- BASE (Bielefeld Academic Search Engine)
- Bibliography and Index of Geology
- CiteFactor
- CNKI Scholar
- Educational Research Abstracts
- Excellence in Research for Australia (ERA)
- GeoRef
- Google Scholar
- LOCKSS
- NewJour
- Norwegian Centre for Research Data (NSD)
- Open J-Gate
- PKP Open Archives Harvester
- SHERPA/RoMEO
- Standard Periodical Directory
- Ulrich's
- Universe Digital Library
- WorldCat
Contact
- Lesley LuoEditorial Assistant
- jgg@ccsenet.org