Soil Chemistry and Cucumber (Cucumis sativus L.) Yield as Influenced by 16 Years of Composted Poultry Litter Addition

  •  Hebert Abobi    
  •  Armand W. Koné    
  •  Bernard Y. Koffi    
  •  Saint Salomon F. Diahuissié    
  •  Stanislas K. Loukou    
  •  Seydou Tiho    


Poultry litter is increasingly used as organic amendment in market gardening in Côte d’Ivoire. To know about the sustainability of this practice, its impacts on soil quality should be known. This study aimed at assessing the effect on soil fertility of composted poultry litter addition for 16 years following two distinct ways, and identifying soil parameters driving cucumber yield. Trials were laid out in a Fisher randomized block design with 3 treatments replicated 5 times each: Control (C), Surface-applied compost (SAC) and Buried compost (BC). Soil (0-20 cm) chemical characteristics and cucumber growth and yield parameters were measured. Values of all parameters were higher with compost addition compared to the control, except for the C:N ratio. SAC and BC showed similar values of organic C, total N, CEC, pH and available phosphorus. However, Ca2+, Mg2+, K+ and base saturation were higher in SAC than in BC. Relative to values in the control, the greatest changes in soil parameters were observed with exchangeable cations, followed by soil organic matter. Soil organic C and total N concentrations have doubled in SAC while Ca2+, Mg2+, and K+ increased at greater rate (702.4, 400.9 and 186.67% respectively). Also, cucumber growth parameters were the highest with compost addition compared to the control. Significant effect of the compost application way on cucumber was also observed: collar diameter, leaf area and fresh fruit yield in SAC (0.72±0.02 cm, 258.9±12.3 cm2, 11.1±1.3 t ha-1, respectively) were higher than in BC (0.56±0.01 cm, 230.2±2.5 cm2, 5.4±0.5 t ha-1 respectively). Fruit yields in SAC and BC were four times and twice higher than in the control (2.6±0.3 t ha-1), respectively. Cucumber growth parameters were determined by soil concentration in Mg2+ while yield was determined by Ca2+. Composted poultry litter should be promoted for a sustainable soil fertility management in vegetable farming systems.

This work is licensed under a Creative Commons Attribution 4.0 License.