Kenaf (Hibiscus cannabinus L.) Impact on Post-Germination Seedling Growth
- Charles Webber III
- Paul White Jr
- Dwight Myers
- James Shrefler
- Merritt Taylor
Abstract
The chemical interaction between plants, which is referred to as allelopathy, may result in the inhibition of plant growth and development. The objective of this research was to determine the impact of kenaf (Hibiscus cannabinus L.) plant extracts on the post-germination growth of five plant species. Four concentrations (0, 16.7, 33.3 and 66.7 g/L) of kenaf bark, core, and leaf extracts were applied to the germinated seeds of redroot pigweed (Amaranthus retroflexus L.), green bean (Phaseolus vulgaris L.), tomato (Solanum lycopersicum Mill.), cucumber (Cucumis sativus L.), and Italian ryegrass (Lolium multiflorum Lam.). After 7 days, the developing seedlings were measured to determine the length of their hypocotyls (mm) and radicles (mm), and the number of hair roots. Tomato, Italian ryegrass, and redroot pigweed followed similar negative trends in their responses to the extract source (kenaf bark, core, and leaves) and the impact of extract concentration, whereas, cucumber had a mixed response and green bean reacted positively to the kenaf extracts. Tomato was the most sensitive species tested across all kenaf extracts and concentrations, resulting in decreased hypocotyl, radicle, and root growth. Green bean exhibited no negative effects due to the kenaf extracts, but actually produced increased hypocotyl growth as a result of the kenaf bark, core, and leaf extracts. The kenaf extracts resulted in a mixed response for cucumber. The kenaf leaf and bark extract decreased cucumber radicle growth, whereas, the bark and core extracts increased hypocotyl growth. Italian ryegrass hypocotyl growth decreased across all extract sources (bark, core, and leaf), while the leaf extract also reduced root growth. All kenaf extracts reduced redroot pigweed radicle growth, while the core and leaf extracts reduced hypocotyl growth. The research demonstrated that kenaf leaf extracts were the most allelopathic and the hypocotyls were the most sensitive. Future research should isolate the chemicals responsible for both the negative and positive allelopathic impact on the various plant species, determine if the extracts will influence more mature plants, and pursue cultural practices to utilize these natural allelopathic materials to benefit crop production and limit weed competition.
- Full Text: PDF
- DOI:10.5539/jas.v7n12p91
Journal Metrics
- h-index: 67
- i10-index: 839
- WJCI (2022): 1.220
- WJCI Impact Factor: 0.263
Index
- AGRICOLA
- AGRIS
- BASE (Bielefeld Academic Search Engine)
- Berkeley Library
- CAB Abstracts
- CiteFactor
- CiteSeerx
- CNKI Scholar
- Copyright Clearance Center
- CrossRef
- DESY Publication Database
- DTU Library
- EBSCOhost
- EconPapers
- Elektronische Zeitschriftenbibliothek (EZB)
- EuroPub Database
- Excellence in Research for Australia (ERA)
- Genamics JournalSeek
- Google Scholar
- Harvard Library
- IDEAS
- Index Copernicus
- Jisc Library Hub Discover
- JournalTOCs
- KindCongress
- LIVIVO (ZB MED)
- LOCKSS
- Max Planck Institutes
- Mendeley
- MIAR
- Mir@bel
- NLM Catalog PubMed
- Norwegian Centre for Research Data (NSD)
- OAJI
- Open J-Gate
- OUCI
- PKP Open Archives Harvester
- Polska Bibliografia Naukowa
- Qualis/CAPES
- RefSeek
- RePEc
- ROAD
- ScienceOpen
- Scilit
- SCiNiTO
- Semantic Scholar
- SHERPA/RoMEO
- Southwest-German Union Catalogue
- Standard Periodical Directory
- Stanford Libraries
- SUDOC
- Technische Informationsbibliothek (TIB)
- Trove
- UCR Library
- Ulrich's
- UniCat
- Universe Digital Library
- WorldCat
- WorldWideScience
- WRLC Catalog
- Zeitschriften Daten Bank (ZDB)
Contact
- Anne BrownEditorial Assistant
- jas@ccsenet.org