A Multi-sensor Analysis of Selected Reflectance-Based Crop Coefficient Models for Daily Maize Evapotranspiration Estimation
- Edson Costa-Filho
- José L. Chávez
- Huihui Zhang
Abstract
This study evaluated three reflectance-based crop coefficient models (RBCC) for daily maize actual evapotranspiration (ETa) estimates, using multispectral data from spaceborne, airborne, and proximal platforms. The goal was to identify the optimal multispectral sensor that gives more accurate daily ETa estimates. The remote sensing (RS) multispectral platforms included Landsat-8, Sentinel-2, Planet CubeSat, handheld multispectral radiometer (MSR), and unmanned aerial system or UAS, spatial resolution from 30 m to 0.03 m. Three RBCC models that use different vegetation indices as input variables were evaluated in the study. One RBCC uses the normalized difference vegetation index (NDVI). The second model uses the soil-adjusted vegetation index (SAVI), and the third model uses canopy cover (fc). The data for this study were from two maize research sites in Greeley and Fort Collins, Colorado, USA, collected in 2020 and 2021. The Greeley site had a subsurface drip system, while the Fort Collins site had surface irrigation (furrow). Daily maize ETa predictions were compared with observed daily maize ETa data from an Eddy Covariance system installed at each research site. Results indicated that, depending on the RS of ETa algorithm and platform, the optimal input RS data was different. The MSR sensor (1 m) provided the best remote sensing data (input) for the SAVI-based RBCC ETa model, with a maize ETa error (MBE±RMSE) of -0.13 (-3%)±0.67 (16%) mm/d. Sentinel-2 was the best sensor for the remaining two RBCC daily maize ETa algorithms, since the errors for the NDVI-based and fc-based RBCC models for maize ETa were 0.21 (5%)±0.78 (18%) mm/d and 0.59 (14%)±1.07 (25%) mm/d, respectively. These results indicate the need for methods to improve the spectral quality of the remote sensing data to improve spatial ETa estimates and advance sustainable irrigation water management.
- Full Text: PDF
- DOI:10.5539/jas.v15n12p1
Journal Metrics
- h-index: 67
- i10-index: 839
- WJCI (2022): 1.220
- WJCI Impact Factor: 0.263
Index
- AGRICOLA
- AGRIS
- BASE (Bielefeld Academic Search Engine)
- Berkeley Library
- CAB Abstracts
- CiteFactor
- CiteSeerx
- CNKI Scholar
- Copyright Clearance Center
- CrossRef
- DESY Publication Database
- DTU Library
- EBSCOhost
- EconPapers
- Elektronische Zeitschriftenbibliothek (EZB)
- EuroPub Database
- Excellence in Research for Australia (ERA)
- Genamics JournalSeek
- Google Scholar
- Harvard Library
- IDEAS
- Index Copernicus
- Jisc Library Hub Discover
- JournalTOCs
- KindCongress
- LIVIVO (ZB MED)
- LOCKSS
- Max Planck Institutes
- Mendeley
- MIAR
- Mir@bel
- NLM Catalog PubMed
- Norwegian Centre for Research Data (NSD)
- OAJI
- Open J-Gate
- OUCI
- PKP Open Archives Harvester
- Polska Bibliografia Naukowa
- Qualis/CAPES
- RefSeek
- RePEc
- ROAD
- ScienceOpen
- Scilit
- SCiNiTO
- Semantic Scholar
- SHERPA/RoMEO
- Southwest-German Union Catalogue
- Standard Periodical Directory
- Stanford Libraries
- SUDOC
- Technische Informationsbibliothek (TIB)
- Trove
- UCR Library
- Ulrich's
- UniCat
- Universe Digital Library
- WorldCat
- WorldWideScience
- WRLC Catalog
- Zeitschriften Daten Bank (ZDB)
Contact
- Anne BrownEditorial Assistant
- jas@ccsenet.org