Density Estimation of Spatio-temporal Point Patterns Using Moran's Statistic
- Jennifer Lorio
- Norou Diawara
- Lance A. Waller
Abstract
Moran's Index is a statistic that measures spatial autocorrelation, quantifying the degree of dispersion (or spread) of objects in space. When investigating data in an area, a single Moran statistic may not give a sufficient summary of the autocorrelation spread. However, by partitioning the area and taking the Moran statistic of each subarea, we discover patterns of the local neighbors not otherwise apparent. In this paper, we consider the model of the spread of an infectious disease, incorporate time factor, and simulate a multilevel Poisson process where the dependence among the levels is captured by the rate of increase of the disease spread over time, steered by a common factor in the scale. The main consequence of our results is that our Moran statistic is calculated from an explicit algorithm in a Monte Carlo simulation setting. Results are compared to Geary's statistic and estimates of parameters under Poisson process are given.
- Full Text: PDF
- DOI:10.5539/ijsp.v7n2p80
This work is licensed under a Creative Commons Attribution 4.0 License.
Index
- ACNP
- Aerospace Database
- BASE (Bielefeld Academic Search Engine)
- CNKI Scholar
- COPAC
- DTU Library
- Elektronische Zeitschriftenbibliothek (EZB)
- EuroPub Database
- Excellence in Research for Australia (ERA)
- Google Scholar
- Harvard Library
- Infotrieve
- JournalTOCs
- LOCKSS
- MIAR
- Mir@bel
- PKP Open Archives Harvester
- Publons
- ResearchGate
- SHERPA/RoMEO
- Standard Periodical Directory
- Technische Informationsbibliothek (TIB)
- UCR Library
- WorldCat
Contact
- Wendy SmithEditorial Assistant
- ijsp@ccsenet.org