On Estimating Non-standard Discrete Distributions Using Adaptive MCMC Methods
- Hatem Baffoun
- Mekki Hajlaoui
- Abdeljelil Farhat
Abstract
In this paper, we compare empirically the performance of some adaptive MCMC methods, that is, Adaptive Metropolis (AM) algorithm, Single Component Adaptive Metropolis (SCAM) algorithm and Delayed Rejection Adaptive Metropolis (DRAM) algorithm. The context is the simulation of non-standard discrete distributions. The performance criterion used is the precision of the frequency estimator. An application to a Bayesian hypothesis testing problem shows the superiority of the DRAM algorithm over the other considered sampling schemes.- Full Text: PDF
- DOI:10.5539/ijsp.v7n3p1
This work is licensed under a Creative Commons Attribution 4.0 License.
Index
- ACNP
- Aerospace Database
- BASE (Bielefeld Academic Search Engine)
- CNKI Scholar
- COPAC
- DTU Library
- Elektronische Zeitschriftenbibliothek (EZB)
- EuroPub Database
- Excellence in Research for Australia (ERA)
- Google Scholar
- Harvard Library
- Infotrieve
- JournalTOCs
- LOCKSS
- MIAR
- Mir@bel
- PKP Open Archives Harvester
- Publons
- ResearchGate
- SHERPA/RoMEO
- Standard Periodical Directory
- Technische Informationsbibliothek (TIB)
- UCR Library
- WorldCat
Contact
- Wendy SmithEditorial Assistant
- ijsp@ccsenet.org