Adaptive Kernel Estimation of the Conditional Quantiles
- Raid Salha
- Hazem El Shekh Ahmed
- Hossam EL-Sayed
Abstract
In this paper, we define the adaptive kernel estimation of the conditional distribution function (cdf) for independent and identically distributed (iid) data using varying bandwidth. The bias, variance and the mean squared error of the proposed estimator are investigated. Moreover, the asymptotic normality of the proposed estimator is investigated.The results of the simulation study show that the adaptive kernel estimation of the conditional quantiles with varying bandwidth have better performance than the kernel estimations with fixed bandwidth.
- Full Text: PDF
- DOI:10.5539/ijsp.v5n1p79
This work is licensed under a Creative Commons Attribution 4.0 License.
Journal Metrics
- h-index (December 2021): 20
- i10-index (December 2021): 51
- h5-index (December 2021): N/A
- h5-median(December 2021): N/A
( The data was calculated based on Google Scholar Citations. Click Here to Learn More. )
Index
- ACNP
- Aerospace Database
- BASE (Bielefeld Academic Search Engine)
- CNKI Scholar
- COPAC
- DTU Library
- Elektronische Zeitschriftenbibliothek (EZB)
- EuroPub Database
- Excellence in Research for Australia (ERA)
- Google Scholar
- Harvard Library
- Infotrieve
- JournalTOCs
- LOCKSS
- MIAR
- Mir@bel
- PKP Open Archives Harvester
- Publons
- ResearchGate
- SHERPA/RoMEO
- Standard Periodical Directory
- Technische Informationsbibliothek (TIB)
- UCR Library
- WorldCat
Contact
- Wendy SmithEditorial Assistant
- ijsp@ccsenet.org